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Abstract: Origin-centered balls only, when 1 = (1+¢) > —(2 +¢), and only for balls when € =0 is the
L,..curvature of a smooth, strictly convex body in in R**¢ known to be constant. Only for origin-
symmetric ellipsoids does the L_,,--curvature remain constant if e = 0. Using the global stability result
from [5], we demonstrate that for 0, the volume symmetric difference between K and a translation of the
unit ball B is nearly zero if the (K + €),..-curvature is approximately constant. Here, we have K shrunk to
the same volume of a unit ball, denoted by K. We demonstrate a comparable result for € = 1 in the L*-
distance class of origin-symmetric entities. We also demonstrate a local stability conclusion for
—(2+¢€) < 1+ e <0: Any strictly convex body with 'nearly’ constant L,, .- curvature is ‘almost’ the unit
ball, and this neighborhood surrounds the unit ball. Both a global stability result in R2 for e =—3/2 and
a local stability result for € = 0 in the Banach-Mazur distance are demonstrated.

Keywords: Li+e curvature function, Li+e Minkowski inequality.

1. Introduction

A convex body is called compact convex subset of RZ*) and (2 + €)-dimensional Euclidean space,
with non-empty interior.

© 2023, CAJOTAS, Central Asian Studies, All Rights Reserved

Copyright (c) 2023 Author (s). This is an open-access article distributed under the terms of Creative Commons
Attribution License (CC BY).To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/


mailto:salih7175.ss@gamil.com
mailto:Shahinazel121@gmail.com

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 04 Issue: 05 | May 2023, ISSN: 2660-5317

The support of the series functions of a convex body K is defined by

Z i (u,,):= I}IEHF?{Z X - Uy, Vi, € §3¥),
For K € F2*< and (v,,) x:0K — S**9 and let
(vm)r—(l:s(ne] S m2te

be the Gauss parameterization of dK. In this case, we have

D helt) =t )R )

The Gauss curvature of dK, ¥, and the curvature function of 9k, f;*, are related to the support
functions of the convex body by.

N 1 det (V2,h7 + g, 1Y)
fi _Z Ky 0 (vm)gl_z det (.9':‘;‘)

The function ™ £ is called the (K + ¢),..-curvature function of K.

For K € F7* we define the scale invariant quantity
Ruse(k) = max (e " ") / min (g™ ).

Which is due to a collective work of Firey, Lutwak, Andrews, Brendle, Choi, and Daskalopoulos
[2].[3].[4],[5].[6].[7].[8].[9] :
Theorem. Let 0 > e > oo, = 2 + €. If K € 77 satisfies then K is the unit ball.

h(_"—’]m m —

K K =

The relative asymmetry of two convex bodies K, K + ¢ is defined as

o V(KA(A(K +€) + x)) e V(K)
JE(K,K-I—E).—A%LE V) , where A _V(K—i-é)

And KAK + €) = (K\ (K + ) U (K + €) \K).

Theorem 1.1. Let € = 0. There exists a constant ¢ independent of dimension with the following
property. Any K € F7** satisfies

1

A(K,B) < C(2+¢€)** (R1+.«_=(K)ﬁ B 1)5
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The (K + €),.-Minkowski inequality also allows us to prove the global stability for 0 = e <1 in
the class of origin-symmetric bodies in the (K + €)*-distance. The L?-distance of K, K + ¢ is defined by

1 :
K+ =(——[ D I = hlldo)

{U7+F

Here o is the spherical Lebesgue measure on $*9, and w;, is the surface area of the i-dimensional
ball.

Theorem 1.2. Let 0 = e = 1 and K € F**< be origin-symmetric. There exists an origin-centered ball
B,..withradius 1 = 1+ ¢ < R, (K), such that

5,(R.Byye) < D(R)(1 — Ry o(K) 1)

Here the diameter of K,D(K), satisfies the inequality

3
1

. 4w z
DR <2 1+(%)3 Ry, (K)

2+

For 1+ € € (—(2 +¢€),0), we also establish a local stability result. The points e, .. will be defined in
Definition 2.1.

Theorem 1.3.Let 1+e€e(—(2+¢€),0). There exist positive constants y,&, depending only on
(2 +¢€),(1+¢) with the following property. If K € F#*¢ with e;, (K) = 0 satisfies ¥ |h7y — 1|,z =& for
some 4 > 0, then &,(K,B) < y(R,,.(K) — 1).

Remark 1.4. For the case € =0, The logarithmic Minkowski inequality in the class of convex
bodies with multiple symmetries proven by Bordczky and Kalantzopoulos in [12] has been used to
improve the stability of the cone-volume measure by Boréczky and De in [11]. We proved Theorem 1.2,
however is independent of the existence of (K + €),,--Minkowski inequality for 0 < e < 1, it is worth
pointing out that such an inequality exists in some particular cases: 0 < e <1 and in the class of origin-
symmetric convex bodies in the plane, or in any dimension and in the class of origin-symmetric bodies for
0 < e < 1 where € > 0 is some constant depending on (2 + €); see [13],[14],[15],[16].

Let K € F7*<. The centro-affine curvature of &, H, is defined by

Hy:= (h;:(1+e]mffcm)_l

It is known the key properties of the centro-affine curvature is that minH,, and maxH,, are invariant
under special linear transformation S(K +¢€)(2 + €). That is,

Ig}irlslHK = Isl}ysle, I;}?_E{HK = Ig}ﬁgiffm, vfeS(K+e)(2+¢€). (1.2)
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Pogorelov's remarkable theorem asserts that an origin-centered ellipsoid is a smooth, strictly convex
body with constant centro-affine curvature [17], Thm. [18].[19].[20], [21],[18],[22]. Stability versions of
this statement include, in the Banach-Mazur distance dz;. For two convex bodies K, K + ¢ is defined by

dpyy(K.K+e)=minfAz1:(K—x)C¥(K+e)—y) S A(K—x),
fEGK +€)(2+¢€),x,y€ER*™c)

Question 2. Is there an increasing function f™ with lim__,¥ f™(s) = 0 with the following property?
If K € F{* satisfies

maxHy

=— =1+¢
minH,

R—(2+E] [:K)

then K is f™(¢)-close to an ellipsoid in the Banach-Mazur distance.

The following theorem gives a positive answer to this question in the plane under no additional
assumption.

Theorem 1.5. There exist y,é > 0 with the following property. If ¥ € 7 satisfies R_,(K) =1+,
then we have

(dpac(K.B) —1)* = y(R_,(K) — 1)

If K has its Santalo point at the origin, then
(dzac(K,B) —1* <y (VR (E) - 1)

In this case, we may allow & = .

dppe (K, B) = R, ()

Theorem 1.6. There exist positive numbers y.d, depending only on (2 +¢€) with the following
property. Suppose K € F7*¢ has its Santalé point at the origin, and for some € € G(K + €)(2 + €) we have
YIhm — 1] < 6.

2. Background
dsac(K,B) < V(R_zoey(K) — 1)7& 41

A convex body K is said to be of class CZ, if its boundary hypersurface is two-times continuously
differentiable and the support function is differentiable.

Let K,K+¢ be two convex bodies with the origin of R*** in their interiors. We put
(1+e)-1«.’:=(1+e)ﬁf{ and (1+25)-U«.’+e):=(1+25)ﬁ(}{+e) where €>0. For €=0, the
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(K + €),,.-linear combination (1 +¢) - K+, (1 + 2¢). (K + €) is defined as the convex body whose support
(1+e)m (1+E]m)i+s
K+e

function is given by ((1 + e)h,; +(1+26)h
For K,K + € € K™%, the mixed (K + €),,.-volume V., (K, K + ¢€) is defined as the first variation of
the usual volume with respect to the (K + €),,.-sum:
2+e V(K+ 1.6 (K+€)—V(K)

1T e — Vi, (K,K+e)= liltljl+ .

Aleksandrov, Fenchel and Jessen for € =0 and Lutwak [7] for € > 0 have shown that there exists a
unique Borel measure S,,.(K,-) on §**<,L,, -surface area measure, such that

1 ,
Ve K+ = [ D7 A" (0,15, (K 1)

Moreover, §,,.(K,-) is absolutely continuous with respect to the surface area measure of K,S(K,-),
and has the Radon-Nikodym derivative

dSy.e(K,) e
TdS(K,) Z g

The measure dS,, . ;= hfjf]mdsﬁ is known as the L,,-surface area measure. If theboundary of K is
CZ, then

S, 1

do _%Hovgl_fx

For € > 0, the L,,-Minkowski inequality states that for convex bodies K,K + ¢ with the origin in
their interiors we have

1te 1te

f Z W™ AS,, (K) 2 V(K)zV(K + €)=

2+e

with equality holds if and only if K and K + € are dilates (i.e. for some 4 > 0,K = A(K + ¢€); see [19].
For € =0, the same inequality holds for all K,K +¢e € %%, and equality holds if and only if K is
homothetic to (K + ¢).

The polar body, K*, of K € %3 is the convex body defined by
K'={yeR*>%:x-y<1,vx €EK]

All geometric quantities associated with the polar body are furnished by = For x € int K, let
K*:= (K —x)*. The Santal6 point of K, denoted by s = s(K), is the unique point in int ¥ such that

V(K®) < V(K¥), VX € intK
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If K = —K, then s(K) =0and K* = K”.

The Blaschke-Santalo inequality states that

V(K*)V(K) < V(B)?

and equality holds if and only if K is an ellipsoid.

Definition 2.1. The (K + €),,-widths of K € X" are defined as follows.

(l) For e > 0: El+E(K) - lllf xEint K.[ h.:iLE+Ede
(2) For e = —1:54(K) = —supXEmt < | Ylog hi .do.
(BForo<e<1:& (K)= _Suprlnt <l h<1+€]mdc;r.

(4) For 0 < e < (2 +€):£;.o(K) = T~ infocine ] T "do

Here w,,. = (2+ €)ky,.= [ do

Here, e, . denotes the unique point at which the corresponding sup or inf is attained. The points e, .
are always in the interior of the convex body; see e.g.[ [23], Lem. 3.1]. If K is origin-symmetric, then
e,.-(K) lies at the origin.

For € = 0 by the L, -Minkowski inequality we have
E.(R)=1 (2.1)

For 0 < € = 2 + ¢ by the Blaschke-Santalé inequality,
&(K)=z0 &, (K)=1, (2.2)

and equality holds when K is a ball. Moreover, for € < 1 we have

. . . . 1
E1+e(K)e_14(K) = —f 2 h.g: +.:: E(.r(]d f h.!c( B—':ir:m]dg -
{(1+e)m (1+2 .
“’mf L o @0l arom =1,

where we used the definition of e, . in the last line. Therefore we obtain
and the equality holds only for balls.

E.(K)z1  (24)

© 2023, CAJOTAS, Central Asian Studies, All Rights Reserved

Copyright (c) 2023 Author (s). This is an open-access article distributed under the terms of Creative Commons
Attribution License (CC BY).To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/



CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 04 Issue: 05 | May 2023, ISSN: 2660-5317

We conclude by remarking that &, .. enjoys the second Eojasiewicz-Simon gradient inequality; see
[24].[25].

3. Stability of the width functionals
We show the stability of the inequalities (2.1) and (2.2) (¢ = —1) (see [1]).
Lemma 3.1. Suppose 1 + € € [—(2 + €),0). Let K € X *** with V(K) = V(B). Then
ey +e(K) = s(B)I? = co(1 — 1, (K)) D(K)'**

(1+e)(e

where 03%:= %;—'Tf (u,,, - v,,)2do(u,,) = m—ﬁf for any vector v,,,, and D(K) denotes the diameter of

&1+ (K)—s(K) and

Proof. We may suppose e, ,.(K) = s(K). Define v,, = — e

e(t) = ey4e(K) + tvy, t €0, |ey, (K) — s(K)].

Let us denote the support function of K — e(t) by k" and

1
E(D):=— f Z R Mg
74+F

Note that E(0) = &,,.(K),E'(0) = 0 and the second derivative of E is given by

Due to if* < D(K) we obtain

(1+¢e)(e)

E:'t‘J7'+.‘=

E"(E) = f > A )t ) )

DI ereK) = 5K < co(——[ Y hl o~ ... (k)

w7+.=

Now the claim follows from the Blaschke-Santalo inequality. We have the following (see [1]).
Theorem 3.2. The following statements hold.

(1) Lete = 0. If £,,.(K) = 1+ ¢, then
AR B < c+e) (1 +e)m—1).
Here C is a universal constant that does not depend on (2 + €).

(2) Let 1 +e€(—(2+¢€)0). If &,.(K) =1—¢, then there exists an origincentered ball of radius
(1 +¢€),B,,., such that
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1
2

8,(K— ey, (K).Byye) < (20,(D(R) + (1 + vs))@*ﬁ%:}é + (ceD(K)1 )

Moreover, if K is origin-symmetric, then the last term on the right-hand-side can be dropped and
D(K) can be replaced by - D(K). Here

24+¢€ 2+E}

= < — 11_5 = —
1=(1+e)=(1—g)%, ¢ Illax{(3+2&_], T5e
and ¢, is the constant from Lemma 3.1.

Proof.Case € = 0: Since £,..(K) = 1+ &, we have

1

{U7+F

f Z hIdo < e, (R) < (1 + £)ies

The refinement of Urysohn's inequality in [10] completes the proof.

Case —(2+¢€)<1+e<0: Assume V(K)=V(B). Denote the support function of K —e,,(K) by
h1%. and the support function of K — s(K) by hI". Since s(K),e,,.(K) are in the interior of K, both hl® and
h1% . are positive functions.

Let us put

By[ [20], Thm. 2.2], we have

+ €
(1+e)
fr=h"""g=1 (1+€)=—(2+6),(1+2¢) =m,ﬂl
= max{l+e 1+ 2¢}
h(l+E]md
r
1 2+e “;’%
(f Wﬂ"’) @ire
2
—rﬁ.lm (3ll)
Vg o/
1 1 2 w}
———i +e
(f h£2+s,::z Jj 2 (_!(+E]3
Due to our assumption,
[ Y (i**™do= [T hY 4oz w,, (1-¢). (3.2)
By the Blaschke-Santal6 inequality, we have
1
J- Z h(?_T]mdU = oy e (33)
g
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From (3.2),(3.3), it follows that

f h(1+s}mdo_
l-—¢c<= E = 1te

To+e ETZE
1 z+e
(-r h(2+s}m doj Wote
5

(3.4)

1+e

1 1 Tate
(1—-8)w,,. = f ) hg +E]de = (_[ h) Wdﬂ) W  stzee

2+€ 2te

Combining (3.1) and (3.4) we obtain

2+e 2

—) 2+e

Y |h( = _(1+e)= < ey, D(K)2*5¢ (3.5)
(K+€)?
where
-1 1
(1+e)P*:=w,,, (f ¥ ;ﬁﬁda) ,1=s(1l+e)=(1—g)i= (3.6)

In view of (3.5) and (3.6) we have

) |h;ﬂ—(1+e)|§K+E]3scla;g+e(a(x)%+(1+e)§)29(x)2+fs (3.7)

If K is origin-symmetric, then s(K) = e,..(K) and the proof is complete. Moreover, in this case we
could have replaced D(K) by gﬂ(h’). Otherwise, to bound ¥ | hi% . — (1 + €)| (g+.)2, NOte that by Lemma 3.1
we have

Therefore,

€1+ (K) = s(K)I* < coD(K)' ¢

D = 1+ Ol eer
1
< DR = 1+ eyt + 02, ez oK) — ()|

< (20,4 (D(K) + (1 + €))3*9)? + (Cotw,, D(K) +5)5.

Remark 3.3. The exponent 1/2 in (1) is sharp; cf. [26]. Moreover, using [[27], Thm. [11].[8].[8]] it
is also possible to give a stability result of order 1/(3+¢) in (1) for the Hausdorff distance
dy (K — cent (K),B); we leave out the details to the interested reader. By cutting off opposite caps of height
¢ of the unit ball, one can see that the optimal order cannot be better than 1 in (2).

Theorem 3.4. Suppose K is an origin-symmetric convex body with

E_(K)=1—¢ forsome < € (0,1)
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Then there exists an origin-centered ball B, of radius 1 = 1+ ¢ = (1 —&)~* such that
Moreover, we have

8,(K.By,c) = D(R)Ve

1
<l1+ (—m”f)g !
Wz e l1-¢

Proof. Set h™ = hz". We have

1
I o do m 1
1 1
£

2 2
(.[ R2m dﬂ') 2+ h2m dﬂ') w2+5

1
2

(o)

(K+e)®
By our assumption and the Blaschke-Santal6 inequality,

Therefore,

1 1
J- Z h—mdazwzﬁ(l—s),z hg—mdaiwyf

Combining these inequalities, we obtain

[ —do 1
l-e< L T (L= 8wy, <_:J-Z h—mdc;r

DI () ge < w5 D(R)E

where (1 +¢€)?:= w,, . (f z—dc;r)_l andl<1+e<(1—g)"

hgi'?!

Next we estimate the diameter from above. Define

S={vm st hP(v,) <R3}
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where R:= maxhj = hZ'(u,,) for some vector u,, € S'**. We may assume R >1. Then by the

1
.[ E hmdg_'_f E h_;ifdg

[:l - S)w2+r_=

Blaschke-Santal6 inequality we have -
{:Z (fs h:m ) IS|3+ é

< (g )3|S[s + 2252
-

+e

Moreover, by convexity we have Yhi (v,,) = YR|u, - v,,| for all v,, € s*** Hence if v,, €5, then
z - T

v, | < R7=. Now using %— arccos x = 2x, vx € [0,1]

Ty,
we obtain

Therefore,

T
2'f":J1+E

1 2 1+e
2 |S] = w40 , sin*** 8de =
R.,

arccos R 3

We give the proofs of the main theorems (see [27]).

4wy, ) 1
l—¢< 1+(w”f) —
Wy e R:

Proof of Theorem 1.1.Suppose rnoghfﬂdsﬁ//dagm’. Therefore by the L,..- Minkowski
inequality,
J‘ h§c1+ejmh§(—e]dsﬁ

my [ hSTMdo - Z
1 1te
2+e V(B)HEV(K)H 2+e V(B)eV(K)=

V K +e
_VC )21 - M
V(B)a+

hC9gs,,
f ' -y

V(B) :+s
=
Z V(B)l-m

Hence &,,.(K) = R,,.(K), and by Theorem 3.2 the proof is complete

Proof of Theorem 1.2.Assume m, = h;’f(_f]dsﬁ/da = M. Then by the (L),..- Minkowski inequality

for e = 0 we have

Therefore,
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! L mee
24 EJ- Z hm(2€+1]h.¥ dsf( = V(B)
K

Owing to (2.4) for € = 0 we have

Zet+l

M 1 S
71 EV(K) 2+e J- Z @dﬂ' = V(K)E'l‘EV(B) (38)

m 1+e 1
V(K) = 5% f D hE e 2 moy(K)EV(B)

and hence for e = —1,
V(K)i= = myV(B)ire (3.9)

Since e_, (K) =0, in view of (3.8) we obtain &_, (K) = R,,.(K)~. The claim follows from Theorem
3.4.

Remark 3.5. It is clear from the proofs of Theorem 1.1 and Theorem 1.2, that if K has only a
positive continuous curvature function, then the same conclusions hold.

Remark 3.6. Applying the Blaschke-Santal6 inequality to the left-hand side of (3.8), we obtain

This combined with (3.9) yields

(%)_ <M

2e+l

my = (%)E =M

Hence in the class of origin-symmetric bodies if V(K) = V(B), then for any € = —1 the (K +¢€),,.-
curvature function attains the value 1 at some point; see also Question 3.

Proof of Theorem 1.3. Define &,,.:F7** — (0,%) by

2+e

fucti) = ([ D nEzrds) ™ v+ o)

By the divergence theorem we have

plem hitemg E 2 V(K —&jm
Z (grad §1+e)(h?)zz . Umc)z . ((f ;;”’"(d; e ﬁ(m)
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By [25], Sec. 3.13 (ii)] and[ [25], p. 80], there exist ¢,,6 =0, such that for any K with
Y| — 1|z = &, there holds

S .
[Erre(®) — EvreBIF < 2 ) [(grad &4, )0 o, -

Assuming m, < hS ™ fm < M gives

L e)ltx(x) 3
J‘ Z h;{( +E]mdﬂ'

2+

This in turn implies |51+E(R')E - 1| < 3 (Ry.(R) —1)°, as well as

1+e

e10e(B) = (1465 (Ryce(B) = 1))

Due to Theorem 3.2, the proof is complete.

Proof of Theorem 1.5.Suppose m, < H; = M. By [3, Lem. [18],
V(K) = }T{ (3.10)

In fact, the lemma states that if V(K) =m, then centro-affine curvature at some point attains 1.
Therefore, since V(,/n/V(K)K) =m, the function (V(K)/m)*H, takes the value 1 at some point. Hence
using (3.10) and the Holder inequality we obtain

1 3
( [ hmpF ﬁfmﬂ;da)
4 hf"de

V(KW(KS) = Z

m
=myV(K)? = nzﬁ

If the Santald point is at the origin, then we can obtain a slightly better lower bound for the volume
product. By [28], we have

> Helun)He () = 1

where u,,, and u},, are related by T{vg*(u,,), vg* () = 1. Since kK = K, this yields

1
= Hys EE, V(K®) = TEV’E
(1]

==

Therefore, V(K)V(K*) = HEJ%. Now in both cases, the result follows from [29]. The third claim is
exactly [29], Cor. [9].
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Question 3. Given the previous argument, we would like to raise a question. Suppose
K e Fi*5,e = 0, and V(K) = V(B). Is it true that the centro-affine curvature of K attains the value 1 at some
point?

Proof of Theorem 1.6. For all £ € G(K + €)(2 + €), we have
S(€K) = £5(K) = 0, dgye (£K, B) = dgy (K, B).
Thus we may assume without loss of generality that

for some & = 0 to be determined.

> hp-ile<s

Define the functional P: F7*< — (0,) by

We have

1

:p[:h’ + E) = :.P(h?+6) = V(K + E)V((K + E)*)

V(K)

L @dP)) = P20 (e~ v KO
-y viK* ]PE(K](V(K] _i)

h(l+E m V(Kx] Hy

(3.11)

By[ [25], Sec. 3.13 (ii)], there exist §,c,>0 and «€(0,1/2], such that for any K with
Y|hE— 1|2 = &, we have

1—a

<X |(grad PP gsey: (3.12)

| 1 1
VIEW(K') V(B)®

By[ [25], p. 80] and[ [30], Lem. 4.1, 4.2] we can choose « = 1/2.
We estimate the right-hand side of (3.12). Note that m, < H, = M implies that

Therefore we obtain

£V}i') Z [ mhﬁfcdc;rﬂ:l
J hgfHydo — mg

< Mo (3.13)

Mmg,

V(E) 1 |V(K] 1
V(E') Hg

On the other hand, by (3.13) and the Blaschke-Santalo inequality,

V(K*)?> = MV(B)? (3.14)
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Putting (3.11),(3.12),(3.13), and (3.14) all together we arrive at

é :PQ(K) |h-!—(m(1+e]
= Cs [R—(Q +€) (K) - I)Z V(Ks)

Since we are in a small neighborhood of the unit ball, the term

1 1
|V(K)V(K*)  V(B)?

(K+e)?

:Pg (K) |h;(m(1+-_=]

Z (E+e)?
V(K*)

is bounded. Using again the Blaschke-Santald inequality we obtain

. 2 V(K)W(K*)
1= c4(R_pan(®)—1)" < “VEE

In view of [ [19], Thm. 1.1], the proof is complete.
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