

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 04 Issue: 05 | May 2023 ISSN: 2660-5317 https://cajotas.centralasianstudies.org

Local and Global Stability of the $\boldsymbol{L}_{1+\boldsymbol{\epsilon}}$ - Curvature

Salih Yousuf Mohamed Salih
Department of mathematics, Faculty of Science, Bakht Al-Ruda University, Duaim. salih7175.ss@gamil.com

Shahinaz.A. Elsamani
Department of mathematics, Faculty of Science, Bakht Al-Ruda University, Duaim.
Shahinazel121@gmail.com

Received $28^{\text {th }}$ Mar 2023, Accepted $29^{\text {th }}$ Apr 2023, Online $26^{\text {th }}$ May 2023

Abstract

Origin-centered balls only, when $1 \neq(1+\epsilon)>-(2+\epsilon)$, and only for balls when $\epsilon=0$ is the $L_{1+\varepsilon}$ curvature of a smooth, strictly convex body in in $\mathbb{R}^{2+\epsilon}$ known to be constant. Only for originsymmetric ellipsoids does the $L_{-(2+\epsilon)}-$-curvature remain constant if $\epsilon=0$. Using the global stability result from [5], we demonstrate that for 0 , the volume symmetric difference between K and a translation of the unit ball B is nearly zero if the $(K+\epsilon)_{1+\epsilon}$-curvature is approximately constant. Here, we have K shrunk to the same volume of a unit ball, denoted by K. We demonstrate a comparable result for $\epsilon \leq 1$ in the L^{2} distance class of origin-symmetric entities. We also demonstrate a local stability conclusion for $-(2+\epsilon)<1+\epsilon<0$: Any strictly convex body with 'nearly' constant $L_{1+\epsilon^{-}}$curvature is 'almost' the unit ball, and this neighborhood surrounds the unit ball. Both a global stability result in $R 2$ for $\epsilon=-3 / 2$ and a local stability result for $\epsilon>0$ in the Banach-Mazur distance are demonstrated.

Keywords: $L_{1+\epsilon}$ curvature function, $L_{1+\epsilon}$ Minkowski inequality.

1. Introduction

A convex body is called compact convex subset of $\mathbb{R}^{(2+\epsilon)}$ and (2+ (2)-dimensional Euclidean space, with non-empty interior.

The support of the series functions of a convex body K is defined by

$$
\sum h_{K}^{m}\left(u_{m}\right):=\max _{x \in K} \sum x \cdot u_{m}, \forall u_{m} \in S^{(1+\varepsilon)} .
$$

For $K \in \mathcal{F}_{0}^{2+\epsilon}$ and $\left(v_{m}\right)_{K}: \partial K \rightarrow S^{(1+\epsilon)}$, and let

$$
\left(v_{m}\right)_{K}^{-1}: S^{(1+\varepsilon)} \rightarrow \mathbb{R}^{2+\varepsilon}
$$

be the Gauss parameterization of ∂K. In this case, we have

$$
\sum h_{K}\left(u_{m}\right)=\sum u_{m} \cdot\left(v_{m}\right)_{K}^{-1}\left(u_{m}\right)
$$

The Gauss curvature of $\partial K, \mathcal{K}_{K}$, and the curvature function of $\partial K, f_{K}^{m}$, are related to the support functions of the convex body by.

$$
f_{K}^{m}=\sum \frac{1}{\mathcal{K}_{K} \circ\left(v_{m}\right)_{K}^{-1}}=\sum \frac{\operatorname{det}\left(\nabla_{i, j}^{2} h_{K}^{m}+g_{i j} h_{K}^{m}\right)}{\operatorname{det}\left(g_{i j}\right)}
$$

The function $h_{K}^{(-\epsilon) m} f_{K}^{m}$ is called the $(K+\epsilon)_{1+\epsilon}$-curvature function of K.
For $K \in \mathcal{F}_{0}^{2+\epsilon}$ we define the scale invariant quantity
$\mathcal{R}_{1+\varepsilon}(K)=\max _{s^{(1+\epsilon)}}\left(h_{K}^{(-\varepsilon) m} f_{K}^{m}\right) / \min _{s^{(1+\varepsilon)}}\left(h_{K}^{((-\epsilon) m)} f_{K}^{m}\right)$.
Which is due to a collective work of Firey, Lutwak, Andrews, Brendle, Choi, and Daskalopoulos [2],[3],[4],[5],[6],[7],[8],[9] :

Theorem. Let $0>\epsilon>\infty, \epsilon \neq 2+\epsilon$. If $K \in \mathcal{F}_{0}^{2+\varepsilon}$ satisfies then K is the unit ball.
$h_{K}^{(-\varepsilon) m} f_{K}^{m} \equiv 1$
The relative asymmetry of two convex bodies $K, K+\epsilon$ is defined as

$$
\mathcal{A}(K, K+\epsilon):=\inf _{x \in \mathbb{R}^{2+\varepsilon}} \frac{V(K \Delta(\lambda(K+\epsilon)+x))}{V(K)}, \text { where } \lambda^{2+\epsilon}=\frac{V(K)}{V(K+\epsilon)}
$$

And $K \Delta(K+\epsilon)=(K \backslash(K+\epsilon)) \cup((K+\epsilon) \backslash K)$.
Theorem 1.1. Let $\epsilon \geq 0$. There exists a constant C independent of dimension with the following property. Any $K \in \mathcal{F}_{0}^{2+\epsilon}$ satisfies

$$
\mathcal{A}(\tilde{K}, B) \leq C(2+\epsilon)^{2.5}\left(\mathcal{R}_{1+\varepsilon}(K)^{\frac{1}{1+\varepsilon}}-1\right)^{\frac{1}{2}}
$$

The $(K+\epsilon)_{(2+\epsilon)}$-Minkowski inequality also allows us to prove the global stability for $0 \leq \epsilon \leq 1$ in the class of origin-symmetric bodies in the $(K+\epsilon)^{2}$-distance. The L^{2}-distance of $K, K+\epsilon$ is defined by

$$
\delta_{2}(K, K+\epsilon)=\left(\frac{1}{\omega_{2+\epsilon}} \int \sum\left|h_{K}^{m}-h_{K+\epsilon}^{m}\right|^{2} d \sigma\right)^{\frac{1}{2}}
$$

Here σ is the spherical Lebesgue measure on $S^{(1+\varepsilon)}$, and ω_{i} is the surface area of the i-dimensional ball.

Theorem 1.2. Let $0 \leq \epsilon \leq 1$ and $K \in \mathcal{F}^{2+\varepsilon}$ be origin-symmetric. There exists an origin-centered ball $B_{1+\epsilon}$ with radius $1 \leq 1+\epsilon \leq \mathcal{R}_{1+\epsilon}(K)$, such that

$$
\delta_{2}\left(\tilde{K}, B_{1+\epsilon}\right) \leq D(\tilde{K})\left(1-\mathcal{R}_{1+\varepsilon}(K)^{-1}\right)^{\frac{1}{2}}
$$

Here the diameter of $\tilde{K}, D(\tilde{K})$, satisfies the inequality

$$
D(\tilde{K}) \leq 2\left(\left(1+\left(\frac{4 \omega_{(1+\varepsilon)}}{\omega_{2+\varepsilon}}\right)^{\frac{1}{2}}\right) \mathcal{R}_{1+\varepsilon}(K)\right)^{3}
$$

For $1+\epsilon \in(-(2+\epsilon), 0)$, we also establish a local stability result. The points $e_{1+\varepsilon}$ will be defined in Definition 2.1.

Theorem 1.3.Let $1+\epsilon \in(-(2+\epsilon), 0)$. There exist positive constants γ, δ, depending only on $(2+\epsilon),(1+\epsilon)$ with the following property. If $K \in \mathcal{F}_{0}^{2+\epsilon}$ with $e_{1+\varepsilon}(K)=0$ satisfies $\sum\left|h_{\lambda K}^{m}-1\right|_{C^{3}} \leq \delta$ for some $\lambda>0$, then $\delta_{2}(\tilde{K}, B) \leq \gamma\left(\mathcal{R}_{1+\varepsilon}(K)-1\right)$.

Remark 1.4. For the case $\epsilon=0$, The logarithmic Minkowski inequality in the class of convex bodies with multiple symmetries proven by Böröczky and Kalantzopoulos in [12] has been used to improve the stability of the cone-volume measure by Böröczky and De in [11]. We proved Theorem 1.2, however is independent of the existence of $(K+\epsilon)_{1+\epsilon}$-Minkowski inequality for $0 \leq \epsilon<1$, it is worth pointing out that such an inequality exists in some particular cases: $0<\epsilon \leq 1$ and in the class of originsymmetric convex bodies in the plane, or in any dimension and in the class of origin-symmetric bodies for $0<\epsilon<1$ where $\epsilon>0$ is some constant depending on $(2+\epsilon)$; see [13], [14], [15], [16].

Let $K \in \mathcal{F}_{0}^{2+\epsilon}$. The centro-affine curvature of K, H_{K}, is defined by

$$
H_{K}:=\left(h_{K}^{(1+\epsilon) m} f_{K}^{m}\right)^{-1}
$$

It is known the key properties of the centro-affine curvature is that $\min H_{K}$ and $\max H_{K}$ are invariant under special linear transformation $S(K+\epsilon)(2+\epsilon)$. That is,

$$
\begin{equation*}
\min _{s^{1+\xi}} H_{K}=\min _{s^{1+\xi}} H_{\ell K^{\prime}}, \max _{s^{1+\xi}} H_{K}=\max _{s^{1+\xi}} H_{\ell K}, \forall \ell \in S(K+\epsilon)(2+\epsilon) . \tag{1.1}
\end{equation*}
$$

Pogorelov's remarkable theorem asserts that an origin-centered ellipsoid is a smooth, strictly convex body with constant centro-affine curvature [17], Thm. [18].[19].[20], [21],[18],[22]. Stability versions of this statement include, in the Banach-Mazur distance $d_{\mathcal{B M}}$. For two convex bodies $K, K+\epsilon$ is defined by

$$
\begin{aligned}
& d_{\mathcal{B M M}}(K, K+\epsilon)=\min \{\lambda \geq 1:(K-x) \subseteq \ell((K+\epsilon)-y) \subseteq \lambda(K-x), \\
& \left.\ell \in G(K+\epsilon)(2+\epsilon), x, y \in \mathbb{R}^{2+\epsilon}\right\}
\end{aligned}
$$

Question 2. Is there an increasing function f^{m} with $\lim _{\varepsilon \rightarrow 0} \Sigma f^{m}(\varepsilon)=0$ with the following property? If $K \in \mathcal{F}_{0}^{2+\varepsilon}$ satisfies

$$
\mathcal{R}_{-(2+\epsilon)}(K)=\frac{\max H_{K}}{\min H_{K}} \leq 1+\varepsilon
$$

then K is $f^{m}(\varepsilon)$-close to an ellipsoid in the Banach-Mazur distance.
The following theorem gives a positive answer to this question in the plane under no additional assumption.

Theorem 1.5. There exist $\gamma, \delta>0$ with the following property. If $K \in \mathcal{F}_{0}^{2}$ satisfies $\mathcal{R}_{-2}(K) \leq 1+\delta$, then we have

$$
\left(d_{\mathcal{B} M}(K, B)-1\right)^{4} \leq \gamma\left(\mathcal{R}_{-2}(K)-1\right)
$$

If K has its Santaló point at the origin, then

$$
\left(d_{\mathcal{B} M}(K, B)-1\right)^{4} \leq \gamma\left(\sqrt{\mathcal{R}_{-2}(K)}-1\right)
$$

In this case, we may allow $\delta=\infty$.

$$
d_{B M}(K, B) \leq \sqrt{\mathcal{R}_{-2}(K)}
$$

Theorem 1.6. There exist positive numbers γ, δ, depending only on $(2+\epsilon)$ with the following property. Suppose $K \in \mathcal{F}_{0}^{2+\varepsilon}$ has its Santaló point at the origin, and for some $\ell \in G(K+\epsilon)(2+\epsilon)$ we have $\sum\left|h_{f K}^{m}-1\right|_{C^{3}} \leq \delta$.

2. Background

$$
d_{B B M}(K, B) \leq \gamma\left(\mathcal{R}_{-(2+\epsilon)}(K)-1\right)^{\frac{1}{2(3+\varepsilon)}}+1
$$

A convex body K is said to be of class C_{+}^{2}, if its boundary hypersurface is two-times continuously differentiable and the support function is differentiable.

Let $K, K+\epsilon$ be two convex bodies with the origin of $\mathbb{R}^{2+\epsilon}$ in their interiors. We put $(1+\epsilon) \cdot K:=(1+\epsilon)^{\frac{1}{1+\epsilon}} K$ and $(1+2 \epsilon) \cdot(K+\epsilon):=(1+2 \epsilon)^{\frac{1}{1+\epsilon}}(K+\epsilon)$ where $\epsilon>0$. For $\epsilon \geq 0$, the
$(K+\epsilon)_{1+\epsilon}$-linear combination $(1+\epsilon) \cdot K+_{1+\epsilon}(1+2 \epsilon) .(K+\epsilon)$ is defined as the convex body whose support function is given by $\left((1+\epsilon) h_{K}^{(1+\epsilon) m}+(1+2 \epsilon) h_{K+\epsilon}^{(1+\epsilon) m}\right)^{\frac{1}{1+\epsilon}}$.

For $K, K+\epsilon \in \mathcal{K}_{0}^{2+\epsilon}$, the mixed $(K+\epsilon)_{1+\epsilon}$-volume $V_{1+\varepsilon}(K, K+\epsilon)$ is defined as the first variation of the usual volume with respect to the $(K+\epsilon)_{1+\epsilon^{-}}$-sum:

$$
\frac{2+\epsilon}{1+\epsilon} V_{1+\epsilon}(K, K+\epsilon)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{V\left(K+{ }_{1+\epsilon} \varepsilon \cdot(K+\epsilon)\right)-V(K)}{\varepsilon} .
$$

Aleksandrov, Fenchel and Jessen for $\epsilon=0$ and Lutwak [7] for $\epsilon>0$ have shown that there exists a unique Borel measure $S_{1+\varepsilon}(K, \cdot)$ on $S^{1+\epsilon}, L_{1+\varepsilon^{-}}$-surface area measure, such that

$$
V_{1+\varepsilon}(K, K+\epsilon)=\frac{1}{2+\epsilon} \int \sum h_{K+\epsilon}^{(1+\epsilon) m}\left(u_{m}\right) d S_{1+\epsilon}\left(K, u_{m}\right)
$$

Moreover, $S_{1+\epsilon}(K, \cdot)$ is absolutely continuous with respect to the surface area measure of $K, S(K, \cdot)$, and has the Radon-Nikodym derivative

$$
\frac{d S_{1+\epsilon}(K, \cdot)}{d S(K \cdot \cdot)}=\sum h_{K}^{(-\epsilon) m}(\cdot)
$$

The measure $d S_{1+\epsilon, K}=h_{K}^{(-\varepsilon) m} d S_{K}$ is known as the $L_{1+\epsilon}$-surface area measure. If theboundary of K is C_{+}^{2}, then

$$
\frac{d S_{K}}{d \sigma}=\frac{1}{\mathcal{K}_{K} \circ v_{K}^{-1}}=f_{K}^{m}
$$

For $\epsilon>0$, the L_{1+}-Minkowski inequality states that for convex bodies $K, K+\epsilon$ with the origin in their interiors we have

$$
\frac{1}{2+\epsilon} \int \sum h_{K+\varepsilon}^{(1+\epsilon) m} d S_{1+\epsilon}(K) \geq V(K)^{\frac{1+\varepsilon}{2+\epsilon}} V(K+\epsilon)^{\frac{1+\varepsilon}{2+\varepsilon}}
$$

with equality holds if and only if K and $K+\epsilon$ are dilates (i.e. for some $\lambda>0, K=\lambda(K+\epsilon)$; see [19]. For $\epsilon=0$, the same inequality holds for all $K, K+\epsilon \in \mathcal{K}^{2+\varepsilon}$, and equality holds if and only if K is homothetic to $(K+\epsilon)$.

The polar body, K^{*}, of $K \in \mathcal{K}_{0}^{2+\epsilon}$ is the convex body defined by

$$
K^{*}=\left\{y \in \mathbb{R}^{2+\epsilon}: x \cdot y \leq 1, \forall x \in K\right\}
$$

All geometric quantities associated with the polar body are furnished by w. For $x \in$ int K, let $K^{x}:=(K-x)^{*}$. The Santaló point of K, denoted by $s=s(K)$, is the unique point in int K such that
$V\left(K^{s}\right) \leq V\left(K^{x}\right), \forall x \in \operatorname{int} K$

If $K=-K$, then $s(K)=0$ and $K^{*}=K^{s}$.
The Blaschke-Santaló inequality states that
$V\left(K^{s}\right) V(K) \leq V(B)^{2}$
and equality holds if and only if K is an ellipsoid.
Definition 2.1. The $(K+\epsilon)_{1+\epsilon}$-widths of $K \in \mathcal{K}^{n}$ are defined as follows.
(1) For $\epsilon>0: \mathcal{E}_{1+\varepsilon}(K)=\frac{1}{\omega_{2+\varepsilon}} \inf _{x \in \operatorname{int} K} \int h_{K-x}^{1+\varepsilon} d \sigma$.
(2) For $\epsilon=-1: \varepsilon_{0}(K)=\frac{1}{\omega_{2+\varepsilon}} \sup _{x \in \operatorname{int} K} \int \Sigma \log h_{K-x}^{m} d \sigma$.
(3) For $0<\epsilon<1: \varepsilon_{1+\epsilon}(K)=\frac{1}{\omega_{2+\varepsilon}} \sup _{x \in \operatorname{int} K} \int h_{K-x}^{(1+\epsilon) m} d \sigma$.
(4) For $0 \leq \epsilon<(2+\epsilon): \varepsilon_{1+\epsilon}(K)=\frac{1}{\omega_{2+\varepsilon}} \inf _{x \in \operatorname{int} K} \int \sum h_{K-x}^{(1+\epsilon) m} d \sigma$.

Here $\omega_{2+\varepsilon}=(2+\epsilon) \kappa_{2+\epsilon}=\int d \sigma$
Here, $e_{1+\varepsilon}$ denotes the unique point at which the corresponding sup or inf is attained. The points $e_{1+\varepsilon}$ are always in the interior of the convex body; see e.g.[[23], Lem. 3.1]. If K is origin-symmetric, then $e_{1+\varepsilon}(K)$ lies at the origin.

For $\epsilon \geq 0$ by the $L_{1+\varepsilon}$-Minkowski inequality we have

$$
\begin{equation*}
\varepsilon_{1+\varepsilon}(\tilde{K}) \geq 1 \tag{2.1}
\end{equation*}
$$

For $0<\epsilon \leq 2+\epsilon$ by the Blaschke-Santaló inequality,

$$
\begin{equation*}
\varepsilon_{0}(\tilde{K}) \geq 0, \varepsilon_{1+\epsilon}(\tilde{K}) \leq 1 \tag{2.2}
\end{equation*}
$$

and equality holds when K is a ball. Moreover, for $\epsilon<1$ we have

$$
\begin{align*}
\varepsilon_{1+\varepsilon}(\tilde{K}) \varepsilon_{-1+\varepsilon}(\tilde{K}) & =\frac{1}{\omega_{2+\varepsilon}^{2}} \int \Sigma h_{\tilde{K}-e_{1+\varepsilon}(\tilde{K})}^{(1+\varepsilon) m} d \sigma \int h_{\tilde{K}-e_{-1+\varepsilon}}^{-(1+\varepsilon) m} d \sigma \\
& \geq \frac{1}{\omega_{2+\varepsilon}^{2}} \int \sum \sum h_{\tilde{K}-e_{-1+\varepsilon}(\tilde{K})}^{(1+\varepsilon) m} d \sigma h_{\tilde{K}-e_{-1+\varepsilon}^{-(1+\varepsilon) m}(\tilde{K}}^{(1+2} \geq 1, \tag{2.3}
\end{align*}
$$

where we used the definition of $e_{1+\varepsilon}$ in the last line. Therefore we obtain
and the equality holds only for balls.
$\varepsilon_{1+\varepsilon}(\tilde{K}) \geq 1$

We conclude by remarking that $\varepsilon_{1+\epsilon}$ enjoys the second Eojasiewicz-Simon gradient inequality; see [24],[25].

3. Stability of the width functionals

We show the stability of the inequalities (2.1) and (2.2) $(\epsilon \neq-1)$ (see [1]).
Lemma 3.1. Suppose $1+\epsilon \in[-(2+\epsilon), 0)$. Let $K \in \mathcal{K}^{2+\varepsilon}$ with $V(K)=V(B)$. Then
$\left|e_{1+\varepsilon}(K)-s(K)\right|^{2} \leq c_{0}\left(1-\varepsilon_{1+\varepsilon}(K)\right) D(K)^{1+\epsilon}$
where $0_{0}^{-1}:=\frac{(1+\varepsilon)(\epsilon)}{2 \omega_{2+\varepsilon}} \int\left(u_{m} \cdot v_{m}\right)^{2} d \sigma\left(u_{m}\right)=\frac{(1+\varepsilon)(\epsilon)}{2(2+\varepsilon)}$ for any vector v_{m}, and $D(K)$ denotes the diameter of K.

Proof. We may suppose $e_{1+\varepsilon}(K) \neq s(K)$. Define $v_{m}=-\frac{e_{1+\varepsilon}(K)-s(K)}{\left|e_{1+\varepsilon}(K)-s(K)\right|}$ and
$e(t)=e_{1+\varepsilon}(K)+t v_{m}, t \in\left[0,\left|e_{1+\epsilon}(K)-s(K)\right|\right]$.
Let us denote the support function of $K-e(t)$ by h_{t}^{m} and
$E(t):=\frac{1}{\omega_{2+\epsilon}} \int \sum h_{t}^{(1+\epsilon) m} d \sigma$
Note that $E(0)=\varepsilon_{1+\epsilon}(K), E^{\prime}(0)=0$ and the second derivative of E is given by
Due to $h_{t}^{m} \leq D(K)$ we obtain

$$
\begin{aligned}
& E^{\prime \prime}(t)=\frac{(1+\epsilon)(\epsilon)}{\omega_{2+\varepsilon}} \int \sum h_{t}^{(\epsilon-1) m}\left(u_{m}\right)\left(u_{m} \cdot v_{m}\right)^{2} d \sigma\left(u_{m}\right) \\
& D(K)^{\epsilon-1}\left|e_{1+\varepsilon}(K)-s(K)\right|^{2} \leq c_{0}\left(\frac{1}{\omega_{2+\varepsilon}} \int \sum h_{K-s(K)}^{(1+\epsilon) m} d \sigma-\varepsilon_{1+\varepsilon}(K)\right)
\end{aligned}
$$

Now the claim follows from the Blaschke-Santaló inequality. We have the following (see [1]).
Theorem 3.2. The following statements hold.
(1) Let $\epsilon \geq 0$. If $\varepsilon_{1+\varepsilon}(\tilde{K}) \leq 1+\varepsilon$, then
$\mathcal{A}(\tilde{K}, B)^{2} \leq C(2+\epsilon)^{5}\left((1+\varepsilon)^{\frac{1}{1+\varepsilon}}-1\right)$.
Here C is a universal constant that does not depend on $(2+\epsilon)$.
(2) Let $1+\epsilon \in(-(2+\epsilon), 0)$. If $\varepsilon_{1+\epsilon}(\tilde{K}) \geq 1-\varepsilon$, then there exists an origincentered ball of radius $(1+\epsilon), B_{1+\epsilon}$, such that
$\delta_{2}\left(\tilde{K}-e_{1+\varepsilon}(\tilde{K}), B_{1+\varepsilon}\right) \leq\left(2 c_{1}(D(\tilde{K})+(1+\epsilon))^{(3+\varepsilon)} \varepsilon\right)^{\frac{1}{2}}+\left(c_{0} D(\tilde{K})^{1-\epsilon} \varepsilon\right)^{\frac{1}{2}}$
Moreover, if \tilde{K} is origin-symmetric, then the last term on the right-hand-side can be dropped and $D(\tilde{K})$ can be replaced by $\frac{1}{2} D(\tilde{K})$. Here

$$
1 \leq(1+\epsilon) \leq(1-\varepsilon)^{\frac{1}{1+\epsilon}}, c_{1}:=\max \left\{\frac{2+\epsilon}{(3+2 \epsilon)},-\frac{2+\epsilon}{1+\epsilon}\right\}
$$

and c_{0} is the constant from Lemma 3.1.
Proof.Case $\epsilon \geq 0$: Since $\varepsilon_{1+\varepsilon}(\tilde{K}) \leq 1+\varepsilon$, we have

$$
\frac{1}{\omega_{2+\varepsilon}} \int \sum h_{\tilde{K}}^{m} d \sigma \leq \varepsilon_{1+\varepsilon}(\tilde{K})^{\frac{1}{1+\varepsilon}} \leq(1+\varepsilon)^{\frac{1}{1+\varepsilon}}
$$

The refinement of Urysohn's inequality in [10] completes the proof.
Case $-(2+\epsilon)<1+\epsilon<0$: Assume $V(K)=V(B)$. Denote the support function of $K-e_{1+\epsilon}(K)$ by $h_{1+\epsilon}^{m}$ and the support function of $K-s(K)$ by h_{s}^{m}. Since $s(K), e_{1+\varepsilon}(K)$ are in the interior of K, both h_{s}^{m} and $h_{1+\varepsilon}^{m}$ are positive functions.

Let us put
By[[20], Thm. 2.2], we have

$$
\begin{align*}
& f^{m}=h_{s}^{(1+\epsilon) m}, g=1, \quad(1+\epsilon)^{2}=-(2+\epsilon),(1+2 \epsilon)=\frac{2+\epsilon}{(3+2 \epsilon)}, c_{1} \\
& =\max \{1+\epsilon, 1+2 \epsilon\} \\
& \sum \frac{\int h_{s}^{(1+\epsilon) m} d \sigma}{\left(\int \frac{1}{\left.h_{s}^{(2+\epsilon) m} d \sigma\right)^{-\frac{1+\epsilon}{2+\epsilon}} \omega_{2+\epsilon}^{\frac{3+2 \epsilon}{2+\epsilon}}}\right.} \\
& \quad \leq 1-\frac{1}{c_{1}} \sum\left|\frac{h_{s}^{-\left(\frac{2+\epsilon}{2}\right) m}}{\left(\int \frac{1}{h_{s}^{(2+\epsilon) m} d \sigma}\right)^{\frac{1}{2}}}-\frac{1}{\omega_{2+\epsilon}^{\frac{1}{2}}}\right|_{(K+\epsilon)^{2}}^{2} \tag{3.1}
\end{align*}
$$

Due to our assumption,

$$
\begin{equation*}
\int \quad \sum \quad\left(h_{s}^{1+e m}\right) d \sigma \geq \int \sum \quad h_{1+\varepsilon}^{(1+\epsilon) m} d \sigma \geq \omega_{2+\varepsilon}(1-\varepsilon) . \tag{3.2}
\end{equation*}
$$

By the Blaschke-Santaló inequality, we have

$$
\begin{equation*}
\int \sum \frac{1}{h_{s}^{(2+\epsilon) m}} d \sigma \leq \omega_{2+\varepsilon} \tag{3.3}
\end{equation*}
$$

From (3.2),(3.3), it follows that

$$
\begin{gather*}
1-\varepsilon \leq \sum \frac{\int h_{s}^{(1+\varepsilon) m} d \sigma}{\left(\int \frac{1}{h_{s}^{(2+\varepsilon) m}} d \sigma\right)^{-\frac{1+\epsilon}{2+\epsilon}} \omega_{2+\varepsilon}^{2+\epsilon \epsilon}} \tag{3.4}\\
(1-\varepsilon) \omega_{2+\varepsilon} \leq \int \sum \quad h_{s}^{(1+\varepsilon) m} d \sigma \leq\left(\int \sum \frac{1}{h_{s}^{(2+\epsilon) m}} d \sigma\right)^{-\frac{1+\varepsilon}{2+\varepsilon}} \omega_{2+\epsilon^{\frac{3+2 \varepsilon \epsilon}{2+\varepsilon}}}
\end{gather*}
$$

Combining (3.1) and (3.4) we obtain

$$
\begin{equation*}
\sum\left|h_{s}^{\left(\frac{2+\varepsilon}{2}\right) m}-(1+\epsilon)^{\frac{2+\varepsilon}{2}}\right|_{(K+\varepsilon)^{2}}^{2} \leq c_{1} \omega_{2+\epsilon} D(K)^{2+\varepsilon} \varepsilon \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
(1+\epsilon)^{2+\epsilon}:=\omega_{2+\epsilon}\left(\int \sum \frac{1}{h_{s}^{(2+\varepsilon) m}} d \sigma\right)^{-1}, 1 \leq(1+\epsilon) \leq(1-\varepsilon)^{\frac{1}{1+\varepsilon}} \tag{3.6}
\end{equation*}
$$

In view of (3.5) and (3.6) we have

$$
\begin{equation*}
\sum\left|h_{s}^{m}-(1+\epsilon)\right|_{(K+\epsilon)^{2}}^{2} \leq c_{1} \omega_{2+\varepsilon}\left(D(K)^{\frac{1}{2}}+(1+\epsilon)^{\frac{1}{2}}\right)^{2} D(K)^{2+\epsilon} \varepsilon \tag{3.7}
\end{equation*}
$$

If K is origin-symmetric, then $s(K)=e_{1+\epsilon}(K)$ and the proof is complete. Moreover, in this case we could have replaced $D(K)$ by $\frac{1}{2} D(K)$. Otherwise, to bound $\sum\left|h_{1+\varepsilon}^{m}-(1+\epsilon)\right|_{(K+\epsilon)^{2}}$, note that by Lemma 3.1 we have

Therefore,

$$
\begin{aligned}
& \left|e_{1+\epsilon}(K)-s(K)\right|^{2} \leq c_{0} D(K)^{1+\epsilon} \varepsilon \\
& \quad \sum\left|h_{1+\varepsilon}^{m}-(1+\epsilon)\right|_{(K+\varepsilon)^{2}} \\
& \quad \leq \sum\left|h_{s}^{m}-(1+\epsilon)\right|_{(K+\varepsilon)^{2}}+\omega_{2+\varepsilon}^{\frac{1}{2}}\left|e_{1+\varepsilon}(K)-s(K)\right| \\
& \leq\left(2 c_{1} \omega_{2+\varepsilon}(D(K)+(1+\epsilon))^{(3+\varepsilon)} \varepsilon\right)^{\frac{1}{2}}+\left(c_{0} \omega_{2+\varepsilon} D(K)^{1+\epsilon} \varepsilon\right)^{\frac{1}{2}} .
\end{aligned}
$$

Remark 3.3. The exponent $1 / 2$ in (1) is sharp; cf. [26]. Moreover, using [[27], Thm. [11].[8].[8]] it is also possible to give a stability result of order $1 /(3+\epsilon)$ in (1) for the Hausdorff distance $d_{\mathscr{H}}(\tilde{K}-\operatorname{cent}(\tilde{K}), B)$; we leave out the details to the interested reader. By cutting off opposite caps of height ε of the unit ball, one can see that the optimal order cannot be better than 1 in (2).

Theorem 3.4. Suppose K is an origin-symmetric convex body with

$$
\varepsilon_{-1}(\tilde{K}) \geq 1-\varepsilon \text { for some } \varepsilon \in(0,1)
$$

Then there exists an origin-centered ball $B_{1+\varepsilon}$ of radius $1 \leq 1+\epsilon \leq(1-\varepsilon)^{-1}$ such that
Moreover, we have
$\delta_{2}\left(\tilde{K}, B_{1+\varepsilon}\right) \leq D(\tilde{K}) \sqrt{\varepsilon}$

$$
\left(\frac{1}{2} D(\tilde{K})\right)^{\frac{1}{3}} \leq\left(1+\left(\frac{4 \omega_{1+\varepsilon}}{\omega_{2+\varepsilon}}\right)^{\frac{1}{2}}\right) \frac{1}{1-\varepsilon}
$$

Proof. Set $h^{m}=h_{\tilde{R}}^{m}$. We have

$$
\sum \frac{\int \frac{1}{h^{m}} d \sigma}{\left(\int \frac{1}{h^{2 m}} d \sigma\right)^{\frac{1}{2}} \omega_{2+\varepsilon}^{\frac{1}{2}}}=1-\frac{1}{2} \sum\left|\frac{\frac{1}{h^{m}}}{\left(\int \frac{1}{h^{2 m}} d \sigma\right)^{\frac{1}{2}}}-\frac{1}{\omega_{2+\varepsilon}^{\frac{1}{2}}}\right|_{(K+\varepsilon)^{2}}
$$

By our assumption and the Blaschke-Santaló inequality,
Therefore,

$$
\int \sum \frac{1}{h^{m}} d \sigma \geq \omega_{2+\varepsilon}(1-\varepsilon), \sum \frac{1}{h^{2 m}} d \sigma \leq \omega_{2+\varepsilon}
$$

Combining these inequalities, we obtain

$$
\begin{aligned}
1-\varepsilon \leq \sum \frac{\int \frac{1}{h^{m}} d \sigma}{\left(\int \frac{1}{h^{2 m}} d \sigma\right)^{\frac{1}{2}} \omega_{2+\varepsilon}^{\frac{1}{2}}},(1-\varepsilon) \omega_{2+\varepsilon} & \leq \int \sum \frac{1}{h^{m}} d \sigma \\
& \leq\left(\int \sum \frac{1}{h^{2 m}} d \sigma\right)^{\frac{1}{2}} \omega_{2+\varepsilon}^{\frac{1}{2}}
\end{aligned}
$$

$\sum\left|h^{m}-(1+\epsilon)\right|_{(K+\varepsilon)^{2}}^{2} \leq \omega_{2+\varepsilon} D(\tilde{K})^{2} \varepsilon$
where $(1+\epsilon)^{2}:=\omega_{2+\epsilon}\left(\int \sum \frac{1}{h^{2 m}} d \sigma\right)^{-1}$ and $1 \leq 1+\epsilon \leq(1-\varepsilon)^{-1}$.
Next we estimate the diameter from above. Define
$S=\left\{v_{m} \in S^{1+\epsilon}: \sum h_{\tilde{K}}^{m}\left(v_{m}\right) \leq R^{\frac{1}{3}}\right\}$
where $R:=\max h_{\tilde{K}}^{m}=h_{\tilde{K}}^{m}\left(u_{m}\right)$ for some vector $u_{m} \in S^{1+\varepsilon}$. We may assume $R>1$. Then by the

Blaschke-Santaló inequality we have

$$
(1-\varepsilon) \omega_{2+\varepsilon} \leq \int_{S} \sum \frac{1}{h_{\bar{K}}^{m}} d \sigma+\int_{S^{\varepsilon}} \sum \frac{1}{h_{\bar{K}}^{m}} d \sigma
$$

$$
\begin{aligned}
& \leq \sum\left(\int_{S} \frac{1}{h_{\frac{K}{2 m}}^{2}} d \sigma\right)^{\frac{1}{2}}|S|^{\frac{1}{2}}+\frac{\left|S^{\varepsilon}\right|}{R^{\frac{1}{3}}} \\
& \leq\left(\omega_{2+\epsilon}\right)^{\frac{1}{2}}|S|^{\frac{1}{2}}+\frac{\omega_{2+\epsilon}}{R^{\frac{1}{3}}}
\end{aligned}
$$

Moreover, by convexity we have $\sum h_{\tilde{K}}^{\mathrm{m}}\left(v_{m}\right) \geq \sum R\left|u_{m} \cdot v_{m}\right|$ for all $v_{m} \in S^{1+\epsilon}$. Hence if $v_{m} \in S$, then $\sum\left|u_{m} \cdot v_{m}\right| \leq R^{-\frac{2}{3}}$. Now using $\frac{\pi}{2}-\arccos x \leq 2 x, \forall x \in[0,1]$
we obtain
Therefore,
$\frac{1}{2}|S| \leq \omega_{1+\epsilon} \int_{\arccos R^{\frac{2}{3}}}^{\frac{\pi}{2}} \sin ^{1+\epsilon} \theta d \theta \leq \frac{2 \omega_{1+\epsilon}}{R^{\frac{2}{3}}}$
We give the proofs of the main theorems (see [27]).
$1-\varepsilon \leq\left(1+\left(\frac{4 \omega_{1+\varepsilon}}{\omega_{2+\varepsilon}}\right)^{\frac{1}{2}}\right) \frac{1}{R^{\frac{1}{3}}}$
Proof of Theorem 1.1.Suppose $m_{0} \leq h_{K}^{m(\epsilon)} d S_{K} / d \sigma \leq M$. Therefore by the $L_{1+\epsilon^{-}}$Minkowski inequality,

$$
\begin{aligned}
& =\frac{V(K)^{\frac{1}{2+\varepsilon}}}{V(B)^{\frac{1}{2+\varepsilon}}} \leq M \\
& \leq \sum \frac{V(B)^{-\frac{1+\varepsilon}{2+\varepsilon}} \frac{1}{2+\varepsilon} \int h_{K}^{m(-\varepsilon)} d S_{K}}{V(B)^{1-\frac{1+\varepsilon}{2+\varepsilon}}} \leq M
\end{aligned}
$$

Hence $\mathcal{E}_{1+\varepsilon}(\tilde{K}) \leq \mathcal{R}_{1+\varepsilon}(\tilde{K})$, and by Theorem 3.2 the proof is complete.
Proof of Theorem 1.2.Assume $m_{0} \leq h_{K}^{m(-\varepsilon)} d S_{K} / d \sigma \leq M$. Then by the $(L)_{2+\epsilon^{-}}$Minkowski inequality for $\epsilon \geq 0$ we have

Therefore,
$\frac{1}{2+\epsilon} \int \sum \frac{1}{h_{K}^{m(2 \epsilon+1)}} h_{K}^{m(-\epsilon)} d S_{K} \geq V(B)$
Owing to (2.4) for $\epsilon \geq 0$ we have

$$
\begin{align*}
& \frac{M}{2+\epsilon} V(K)^{\frac{2 \epsilon+1}{2+\epsilon}} \int \sum \frac{1}{h_{K}^{m(2 \epsilon+1)}} d \sigma \geq V(K)^{\frac{1}{2+\epsilon}} V(B) . \tag{3.8}\\
& V(K) \geq \frac{m_{0}}{2+\epsilon} \int \quad \sum h_{K}^{(1+\epsilon) m} d \sigma \geq m_{0} V(K)^{\frac{1+\varepsilon}{2+\epsilon}} V(B)^{\frac{1}{2+\varepsilon}}
\end{align*}
$$

and hence for $\epsilon \geq-1$,
$V(K)^{\frac{1}{2+\varepsilon}} \geq m_{0} V(B)^{\frac{1}{2+\varepsilon}}$
Since $e_{-1}(K)=0$, in view of (3.8) we obtain $\varepsilon_{-1}(\tilde{K}) \geq \mathcal{R}_{1+\varepsilon}(K)^{-1}$. The claim follows from Theorem 3.4.

Remark 3.5. It is clear from the proofs of Theorem 1.1 and Theorem 1.2, that if K has only a positive continuous curvature function, then the same conclusions hold.

Remark 3.6. Applying the Blaschke-Santaló inequality to the left-hand side of (3.8), we obtain
This combined with (3.9) yields
$\left(\frac{V(K)}{V(B)}\right)^{\frac{2 \varepsilon+1}{2+\varepsilon}} \leq M$
$m_{0} \leq\left(\frac{V(K)}{V(B)}\right)^{\frac{2 \epsilon+1}{2+\varepsilon}} \leq M$
Hence in the class of origin-symmetric bodies if $V(K)=V(B)$, then for any $\epsilon \geq-1$ the $(K+\epsilon)_{1+\epsilon^{-}}$ curvature function attains the value 1 at some point; see also Question 3.

Proof of Theorem 1.3. Define $\tilde{\varepsilon}_{1+\varepsilon}: \mathcal{F}_{0}^{2+\epsilon} \rightarrow(0, \infty)$ by
$\tilde{\varepsilon}_{1+\varepsilon}\left(h_{K+\epsilon}^{m}\right)=\left(\int \sum h_{K+\epsilon}^{1+e m} d \sigma\right)^{\frac{2+\varepsilon}{1+\epsilon}} / V(K+\epsilon)$
By the divergence theorem we have

$$
\sum\left(\operatorname{grad} \tilde{\varepsilon}_{1+\epsilon}\right)\left(h_{K}^{m}\right)=\sum \frac{h_{K}^{(\epsilon) m}\left(\int h_{K}^{1+e m} d \sigma\right)^{\frac{2+\varepsilon}{1+\varepsilon}}}{V(K)^{2}}\left(\frac{(2+\epsilon) V(K)}{\int h_{K}^{1+\epsilon m} d \sigma}-h_{K}^{(-\epsilon) m} f_{K}^{m}\right)
$$

By [25], Sec. 3.13 (ii)] and[[25], p. 80], there exist $c_{2}, \delta>0$, such that for any K with $\sum\left|h_{K}^{m}-1\right|_{C^{3}} \leq \delta$, there holds

$$
\left|\tilde{\varepsilon}_{1+\varepsilon}(K)-\tilde{\varepsilon}_{1+\varepsilon}(B)\right|^{\frac{1}{2}} \leq c_{2} \sum\left|\left(\operatorname{grad} \tilde{\varepsilon}_{1+\varepsilon}\right)\left(h_{K}^{m}\right)\right|_{(K+\varepsilon)^{2}}
$$

Assuming $m_{0} \leq h_{K}^{(-\varepsilon) m} f_{K}^{m} \leq M$ gives

$$
m_{0} \leq \frac{(2+\epsilon) V(K)}{\int \sum h_{K}^{(1+\epsilon) m} d \sigma} \leq M
$$

This in turn implies $\left|\mathcal{E}_{1+\epsilon}(\tilde{K})^{\frac{2+\varepsilon}{1+\varepsilon}}-1\right| \leq c_{3}\left(\mathcal{R}_{1+\epsilon}(\tilde{K})-1\right)^{2}$, as well as

$$
\varepsilon_{1+\varepsilon}(\tilde{K}) \geq\left(1+c_{3}\left(\mathcal{R}_{1+\varepsilon}(\tilde{K})-1\right)^{2}\right)^{\frac{1+\varepsilon}{2+\varepsilon}}
$$

Due to Theorem 3.2, the proof is complete.
Proof of Theorem 1.5.Suppose $m_{0} \leq H_{K} \leq M$. By [3, Lem. [18],

$$
\begin{equation*}
V(K) \geq \frac{\pi}{\sqrt{M}} \tag{3.10}
\end{equation*}
$$

In fact, the lemma states that if $V(K)=\pi$, then centro-affine curvature at some point attains 1 . Therefore, since $V(\sqrt{\pi / V(K)} K)=\pi$, the function $(V(K) / \pi)^{2} H_{K}$ takes the value 1 at some point. Hence using (3.10) and the Hölder inequality we obtain

$$
V(K) V\left(K^{s}\right) \geq \sum \frac{\left(\int h_{K}^{m} f_{K}^{m} H_{K}^{\frac{1}{3}} d \sigma\right)^{3}}{4 \int h_{K}^{m} f_{K}^{m} d \sigma} \geq m_{0} V(K)^{2} \geq \pi^{2} \frac{m_{0}}{M}
$$

If the Santaló point is at the origin, then we can obtain a slightly better lower bound for the volume product. By [28], we have

$$
\sum H_{K}\left(u_{m}\right) H_{K^{*}}\left(u_{m}^{*}\right)=1
$$

where u_{m} and u_{m}^{*} are related by $\Sigma\left\langle v_{K}^{-1}\left(u_{m}\right), v_{K^{*}}^{-1}\left(u_{m}^{*}\right)\right\rangle=1$. Since $K^{S}=K^{*}$, this yields

$$
\frac{1}{M} \leq H_{K^{s}} \leq \frac{1}{m_{0}}, V\left(K^{s}\right) \geq \pi \sqrt{m_{0}}
$$

Therefore, $V(K) V\left(K^{s}\right) \geq \pi^{2} \sqrt{\frac{m_{0}}{M}}$. Now in both cases, the result follows from [29]. The third claim is exactly [29], Cor. [9].

Question 3. Given the previous argument, we would like to raise a question. Suppose $K \in \mathcal{F}_{0}^{2+\varepsilon}, \epsilon \geq 0$, and $V(K)=V(B)$. Is it true that the centro-affine curvature of K attains the value 1 at some point?

Proof of Theorem 1.6. For all $\ell \in G(K+\epsilon)(2+\epsilon)$, we have
$s(\ell K)=\ell s(K)=0, d_{B M}(\ell K, B)=d_{B M}(K, B)$.
Thus we may assume without loss of generality that
for some $\delta>0$ to be determined.
$\sum\left|h_{K}^{m}-1\right|_{c^{3}} \leq \delta$
Define the functional $\mathcal{P}: \mathcal{F}_{0}^{2+\epsilon} \rightarrow(0, \infty)$ by
We have

$$
\begin{align*}
\mathcal{P}(K+\epsilon)=\mathcal{P}\left(h_{K+\epsilon}^{m}\right) & =\frac{1}{V(K+\epsilon) V\left((K+\epsilon)^{*}\right)} \\
\sum \quad(\operatorname{grad} \mathcal{P})\left(h_{K}^{m}\right) & =\sum \mathcal{P}^{2}(K)\left(\frac{V(K)}{h_{K}^{(2+\epsilon)+1) m}}-V\left(K^{*}\right) f_{K}^{m}\right) \\
& =\sum \frac{V\left(K^{*}\right) \mathcal{P}^{2}(K)}{h_{K}^{(1+\epsilon) m}}\left(\frac{V(K)}{V\left(K^{*}\right)}-\frac{1}{H_{K}}\right) \tag{3.11}
\end{align*}
$$

By[[25], Sec. 3.13 (ii)], there exist $\delta, c_{2}>0$ and $\alpha \in(0,1 / 2]$, such that for any K with $\sum\left|h_{K}^{m}-1\right|_{C^{3}} \leq \delta$, we have
$\left|\frac{1}{V(K) V\left(K^{*}\right)}-\frac{1}{V(B)^{2}}\right|^{1-\alpha} \leq c_{2} \sum\left|(\operatorname{grad} \mathcal{P})\left(h_{K}^{m}\right)\right|_{(K+\varepsilon)^{2}}$
By[[25], p. 80] and[[30], Lem. 4.1, 4.2] we can choose $\alpha=1 / 2$.
We estimate the right-hand side of (3.12). Note that $m_{0} \leq H_{K} \leq M$ implies that
Therefore we obtain

$$
\begin{align*}
& \frac{1}{M} \leq \frac{V(K)}{V\left(K^{*}\right)}=\sum \frac{\int h_{K}^{m} f_{K}^{m} d \sigma}{\int h_{K}^{m} f_{K}^{m} H_{K} d \sigma} \leq \frac{1}{m_{0}} \\
& \frac{1}{M} \leq \frac{V(K)}{V\left(K^{*}\right)} \leq \frac{1}{m_{n}} \text { and }\left|\frac{V(K)}{V\left(K^{*}\right)}-\frac{1}{H_{K}}\right| \leq \frac{M-m_{0}}{M m_{n}} \tag{3.13}
\end{align*}
$$

On the other hand, by (3.13) and the Blaschke-Santaló inequality,

$$
\begin{equation*}
V\left(K^{*}\right)^{2} \leq M V(B)^{2} \tag{3.14}
\end{equation*}
$$

Putting (3.11),(3.12),(3.13), and (3.14) all together we arrive at

$$
\left|\frac{1}{V(K) V\left(K^{*}\right)}-\frac{1}{V(B)^{2}}\right|^{\frac{1}{2}} \leq c_{3}\left(\mathcal{R}_{-(2+\varepsilon)}(K)-1\right) \sum \frac{\mathcal{P}^{2}(K)\left|h_{K}^{-m(1+\varepsilon)}\right|_{(K+\varepsilon)^{2}}}{V\left(K^{*}\right)}
$$

Since we are in a small neighborhood of the unit ball, the term

$$
\sum \frac{\mathcal{P}^{2}(K)\left|h_{K}^{-m(1+\varepsilon)}\right|_{(K+\varepsilon)^{2}}}{V\left(K^{*}\right)}
$$

is bounded. Using again the Blaschke-Santaló inequality we obtain

$$
1-c_{4}\left(\mathcal{R}_{-(2+\varepsilon)}(K)-1\right)^{2} \leq \frac{V(K) V\left(K^{*}\right)}{V(B)^{2}}
$$

In view of [[19], Thm. 1.1], the proof is complete.

References

1. Mohammad N. Ivaki, On the stability of the L_{p}-curvature, J. of Functional Analysis, 283 (2022), 109684.
2. Qazza, A., Abdoon, M., Saadeh, R., \& Berir, M. (2023). A New Scheme for Solving a Fractional Differential Equation and a Chaotic System. European Journal of Pure and Applied Mathematics, 16(2), 1128-1139.
3. Saadeh, R., A. Abdoon, M., Qazza, A., \& Berir, M. (2023). A Numerical Solution of Generalized Caputo Fractional Initial Value Problems. Fractal and Fractional, 7(4), 332.
4. Abdoon, M. A., Saadeh, R., Berir, M., \& Guma, F. E. (2023). Analysis, modeling and simulation of a fractional-order influenza model. Alexandria Engineering Journal, 74, 231-240.
5. Hasan, F. L., \& Abdoon, M. A. (2021). The generalized (2+1) and (3+1)-dimensional with advanced analytical wave solutions via computational applications. International Journal of Nonlinear Analysis and Applications, 12(2), 1213-1241.
6. W.J. Firey, On the shapes of worn stones, Mathematika 21 (1974) 1-11.
7. E. Lutwak, TheBrunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differ. Geom. 38 (1993) 131-150.
8. B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999) 151161.
9. S. Brendle, K. Choi, P. Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math. 219 (2017) 1-16.
10. Segal, Remark on stability of Brunn-Minkowski and isoperimetric inequalities for convex bodies, in: B. Klartag, S. Mendelson, V.D. Milman (Eds.), Geometric Aspects of Functional Analysis, in: Lecture Notes in Math., vol. 2050, Springer, Berlin, 2012, pp. 381392.
11. K.J. Böröczky, A. De, Stable solution of the log-Minkowski problem in the case of many hyperplane symmetries, J. Differ. Equ. 298 (2021) 298-322.
12. K.J. Böröczky, P. Kalantzopoulos, Log-Brunn-Minkowski inequality under symmetry, Trans. Am. Math. Soc. (2022), https://doi.org/10.1090/tran/8691.
13. S. Chen, H. Yong, Q.R. Li, J. Liu, The L_{p}-Brunn-Minkowski inequality for $1+\epsilon<1$, Adv. Math. 368 (2020) 107166.
14. A.V. Kolesnikov, E. Milman, Local L^{p}-Brunn-Minkowski inequalities for $1+\epsilon<1$, Mem. Am. Math. Soc. 277 (2022) 1360.
15. E. Milman, Centro-affine differential geometry and the log-Minkowski problem, arXiv:2104.12408, 2021 (35) Volume (3) December 2022; [UBJSR: ISSN [1858-6139]: (Online)
16. E. Milman, A sharp centro-affine isospectral inequality of Szegö-Weinberger type and the L_{p} Minkowski problem, J. Differ. Geom. (2022), https://doi.org/10.1007/978-3-64229849-3 24, in press, arXiv:2103.02994.
17. E.C. Gutiérrez, TheMonge-Ampère Equation, vol. 42, Springer Science \& Business Media, 2012.
18. S.Y. Cheng, S.T. Yau, Complete affine hypersurfaces. Part I. The completeness of affine metrics, Commun. Pure Appl. Math. 39 (1986) 839-866.
19. K.J. Böröczky, Stability of Blaschke-Santaló inequality and the affine isoperimetric inequality, Adv. Math. 225 (2010) 1914-1928.
20. J.M. Aldaz, A stability version of Hölder's inequality, J. Math. Anal. Appl. 343 (2008) 842-852.
21. E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Mich. Math. J. 5 (1958) 105-126.
22. M. Marini, G. De Philippis, A note on Petty's problem, Kodai Math. J. 37 (2014) 586594.
23. M.N. Ivaki, Deforming a hypersurface by Gauss curvature and support function, J. Funct. Anal. 271 (2016) 2133-2165.
24. L. Simon, Non-linear evolution equations, with applications to geometric problems, Ann. Math. 118(1983)525-571
25. L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, BirkhäuserVerlag, Basel, 1996.
26. Figalli, F. Maggi, F. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182 (2010) 167-211.
27. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, New York, 2014.
28. D. Hug, Curvature relations and affine surface area for a general convex body and its polar, Results Math. 29 (1996) 233-248.
29. M.N. Ivaki, Stability of the Blaschke-Santaló inequality in the plane, Monatshefte Math. 177(2015)451-459
30. M.N. Ivaki, A local uniqueness theorem for minimizers of Petty's conjectured projection inequality, Mathematika 64 (2018) 1-19.
