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Abstract: In this article a new numerical scheme for dynamical models with applications to chaotic 

systems was developed, we present the analysis of errors in general. The novel numerical method was 

used to address both linear and nonlinear fractional dynamical systems. The technique was used two 

(linear and nonlinear) systems to be solved of the fractional ordinary differential equations as well as 

fours nonlinear chaotic models.    
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_____________________________________________________________________________________ 

 

1. Introduction 

Differential equations play both active roles in the description of natural and complicated events in 

fluid mechanics, biology, and applied physics, fractional equations it is a powerful tool for describing 

living phenomena in physics and engineering [1-11]. Therefore, numerical scheme has been that has 

gained acceptance as a useful system. Therefore, numerical scheme has been recognized as an effective 

tool for solving systems. We dedicate this article the creation of a novel numerical approach that 

incorporates the fundamental theorem of fractions and the two-stage Lagrangian polynomial [12]. The 
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numerical approach will be used to resolve both linear and nonlinear systems of ordinary fractional 

equations. 

Several methodologies, including physics and engineering, have been applied to problems in 

management, economics and biology, among others [13-18], recent attention has been drawn to the 

fractional SIR Model due to the spread of diseases such as Covid-19. Furthermore, we will apply this 

technique to several chaotic model [19-21], The numerical simulation results shown in both situations 

comprise and three-dimensional phase pictures with varying parameters. The novelty of this study is that 

it provides a numerical solution for fractional derivative order in linear and nonlinear fractional dynamical 

systems. 

The goal of this research was to lay the groundwork for using fractional systems in other fields of 

science and technology. This method's value resides in the fact that it can be applied to a wide variety of 

models from disease models and chaos models to additional models in pathology and dynamical models 

in order to locate a numerical solution. 

2. Preliminaries 

Definition 1 Riemann-Liouville fractional integral operator of order  for a function  is 

given by [22]: 

(1) 

Definition 2 The fractional integral of order  of a function  is defined as [23] 

(2) 

Definition 3 The Mittag-Leffler function is a generalization of the exponential function. This 

function can be expressed as follows: 

(3) 

Definition 4 For , Then the AB fractional operator [24] y(t) in the 

Riemann–Liouville is given by 

(4) 

In this expression  satisfies the condition . 

Definition 5 For y ∈ H1 (0, T), T > 0Then the AB fractional operator [24] y(t) in the Caputo sense is 

given by 

(5) 

In this expression  satisfies the condition . 

3. Applications: 

3.1 The new numerical scheme 
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The use of the novel numerical approach [16] for solving fractional differential equations is covered 

in the next section. 

 

3.2.  linear systems of the fractional ordinary differential equations: 

                                                      (6) 

 

We apple AB operators in system (6-7) we get: 

 

                                                       (7) 

Where a=2, b=1, c=4, d=3. 

We simulate the numerical solution using the specified numerical approach., the estimation of error 

is given 

Table 1: Estimation of Error 

 
 

 

= 0.94 10 0.4875 

= 0.97 100 0.033 

=0.99 1000 0.0057918680 
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Fig.1 Comparison of exact solution and numerical solution for h = 0.1. 

 
Fig.2 Comparison of numerical solution and exact solution for h = 0.01. 
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Fig.3 Comparison of numerical solution and exact solution for h = 0.001. 

 

3.3. Nonlinear systems of the fractional ordinary differential equations: 

 

 

                                               (10) 

We apple AB operators in system (6-7) we get: 

 

                               (11) 

 

 

Where . 

Equilibria: The three equilibrium points obtained by solving (8) are                     

, ,  

Jacobean matrix of the system (8) is given 

(12) 

At the parameter values  the equilibrium points are 

,(13)  ,    

The Jacobean matrix at  

                                         (14) 

The characteristic equation obtained from (6) at equilibrium  is as in the following 

equation. 

+( =0                                           (14) 

The solution of the characteristic equation gives the eigenvalues. similarly, the eigenvalues 

corresponding to  and  are calculated. 
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Table 2: Equilibria of (11) and their eigenvalues 

 Equilibria Eigenvalues Stability 

 

 

(1.1507 12.96i, - 19.31) Unstable 

 

 

(33.2189, -1, -49.22) Unstable 

 

 

(1.1507 12.96i, -19.31) Unstable 

 
Fig.4. Distribution equilibrium points of the fractional-order system. 

 
Fig.5. Stability of the fractional-order system. 
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Fig.6. Chaotic attractor for α = 0.98, h=0.1and t=2000 in a y-x plane. 

 
Fig.7. Chaotic attractor for α = 0.98, h=0.1and t=1500 in a y-x plane. 

 

 

 
Fig.8. Chaotic attractor for α = 0.98, h=0.1and t=500 in a y-x plane. 
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Fig.9. Chaotic attractor for α = 0.98, h=0.1and t=500 in a y-x-z space. 

 

 

4. Conclusion: 

We proposed a new numerical approach to solve fractional differential equations (Linear and 

nonlinear) made up from this kind of derivative. The novel scheme technique combines polynomials and 

Lagrange theorems with fractional calculus' basic theorem. When compared to precise answers, the 

suggested technique can be demonstrated to be extremely accurate. The method is simple, effective and 

can be widely applied as it shows chaos, the stability analysis of this method has discussed with error 

estimation. Effective and adaptable to many fractional systems, this technique is widely used. 
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