Numerical technique of Dynamical models with Applications to Chaotic Systems

Salih Yousuf Mohamed Salih
Department of mathematics, Faculty of Science, Bakht Al-Ruda University, Duaim.
salih7175.ss@gamil.com

Shahinaz.A. Elsamani
Department of mathematics, Faculty of Science, Bakht Al-Ruda University, Duaim.
Shahinazel121@gmail.com

Abstract: In this article a new numerical scheme for dynamical models with applications to chaotic systems was developed, we present the analysis of errors in general. The novel numerical method was used to address both linear and nonlinear fractional dynamical systems. The technique was used two (linear and nonlinear) systems to be solved of the fractional ordinary differential equations as well as fours nonlinear chaotic models.

Keywords: Fractional differential system, AB operators, Stability, chaotic.

1. Introduction
Differential equations play both active roles in the description of natural and complicated events in fluid mechanics, biology, and applied physics, fractional equations it is a powerful tool for describing living phenomena in physics and engineering [1-11]. Therefore, numerical scheme has been that has gained acceptance as a useful system. Therefore, numerical scheme has been recognized as an effective tool for solving systems. We dedicate this article the creation of a novel numerical approach that incorporates the fundamental theorem of fractions and the two-stage Lagrangian polynomial [12].
numerical approach will be used to resolve both linear and nonlinear systems of ordinary fractional equations.

Several methodologies, including physics and engineering, have been applied to problems in management, economics and biology, among others [13-18], recent attention has been drawn to the fractional SIR Model due to the spread of diseases such as Covid-19. Furthermore, we will apply this technique to several chaotic model [19-21]. The numerical simulation results shown in both situations comprise and three-dimensional phase pictures with varying parameters. The novelty of this study is that it provides a numerical solution for fractional derivative order in linear and nonlinear fractional dynamical systems.

The goal of this research was to lay the groundwork for using fractional systems in other fields of science and technology. This method's value resides in the fact that it can be applied to a wide variety of models from disease models and chaos models to additional models in pathology and dynamical models in order to locate a numerical solution.

2. Preliminaries

Definition 1 Riemann-Liouville fractional integral operator of order \(\alpha > 0 \) for a function \(y(t) \) is given by [22]:

\[
D^\alpha_y(t) := \frac{1}{\Gamma(n-\alpha)} \int_0^t (t-\tau)^{n-\alpha-1} y^n(\tau) d\tau = I^{n-\alpha} y^n(t), \quad t > 0
\]

(1)

Definition 2 The fractional integral of order \(\alpha \) of a function \(f \) is defined as [23]

\[
I_T^\alpha f(y) := \frac{2(1-y)}{(2-y)M(y)} f(y) + \frac{2(1-y)}{(2-y)M(y)} \int_0^t y(\tau) d\tau, \quad t \geq 0, 0 < \alpha < 1
\]

(2)

Definition 3 The Mittag-Leffler function is a generalization of the exponential function. This function can be expressed as follows:

\[
E_{\alpha}(t) = \sum_{k=0}^{\infty} \frac{t^k}{\Gamma(\alpha k + 1)}
\]

(3)

Definition 4 For \(y \in H^1(0, T), \quad T > 0, \alpha \in (0, 1) \) then the AB fractional operator [24] \(y(t) \) in the Riemann–Liouville is given by

\[
\frac{\Delta^\alpha_a}{0} D_t^\alpha y(t) := \frac{B(\alpha)}{1-\alpha} \int_0^t y(\tau) E_{\alpha} \left(\frac{\alpha}{1-\alpha} (t-\tau)^\alpha \right) d\tau. \quad 0 < \alpha < 1
\]

(4)

In this expression \(B(\alpha) \) satisfies the condition \(B(0) = B(1) = 1 \).

Definition 5 For \(y \in H^1(0, T), \quad T > 0 \) then the AB fractional operator [24] \(y(t) \) in the Caputo sense is given by

\[
\frac{\Delta^\alpha_a}{0} D_t^\alpha y(t) := \frac{B(\alpha)}{1-\alpha} \int_0^t \frac{d^\alpha}{d\tau} y(\tau) E_{\alpha} \left(\frac{\alpha}{1-\alpha} (t-\tau)^\alpha \right) d\tau. \quad 0 < \alpha < 1
\]

(5)

In this expression \(B(\alpha) \) satisfies the condition \(B(0) = B(1) = 1 \).

3. Applications:

3.1 The new numerical scheme
The use of the novel numerical approach [16] for solving fractional differential equations is covered in the next section.

3.2. linear systems of the fractional ordinary differential equations:

\begin{align}
D^\alpha_0 S &= \alpha S_1 - b S_2 \\
D^\alpha_1 S &= c S_1 - d S_2
\end{align}

We apply AB operators in system (6-7) we get:

\begin{align}
\frac{S_1}{\alpha} &= 2, \quad b=1, \quad c=4, \quad d=3. \\
\frac{S_1}{\alpha} &= 2, \quad b=1, \quad c=4, \quad d=3.
\end{align}

Where \(a=2, b=1, c=4, d=3. \)

We simulate the numerical solution using the specified numerical approach, the estimation of error is given

Table 1: Estimation of Error

| \(\alpha \) | \(h = \frac{\Delta t}{\alpha} \) | \(||R_e|| = ||y_{app(t)} - y_{exact(t)}|| \) |
|-------------|-----------------|----------------------------------|
| 0.94 | 10 | 0.4875 |
| 0.97 | 100 | 0.033 |
| 0.99 | 1000 | 0.0057918680 |
Fig. 1 Comparison of exact solution and numerical solution for $h = 0.1$.

Fig. 2 Comparison of numerical solution and exact solution for $h = 0.01$.
3.3. Nonlinear systems of the fractional ordinary differential equations:

\[
\begin{align*}
\dot{S}_1 &= \theta(S_2 + S_1) \\
\dot{S}_2 &= -S_2 - S_1 S_3 + \beta S_1 \\
\dot{S}_3 &= -S_3 + S_1 S_2
\end{align*}
\]

We apply AB operators in system (6-7) we get:

\[
\begin{align*}
\frac{\alpha \beta}{\alpha \beta} D^\lambda_0 S_1 &= \theta(S_2 + S_1) \\
\frac{\alpha \beta}{\alpha \beta} D^\lambda_0 S_2 &= -S_2 - S_1 S_3 + \beta S_1 \\
\frac{\alpha \beta}{\alpha \beta} D^\lambda_0 S_3 &= -S_3 + S_1 S_2
\end{align*}
\]

Where \(0 < \lambda \leq 1\).

Equilibria: The three equilibrium points obtained by solving (8) are:

\[E_1 = (\sqrt{\beta - 1}, \sqrt{\beta - 1}, \beta - 1), \ E_2 = (0,0,0), \ E_3 = (-\sqrt{\beta - 1}, -\sqrt{\beta - 1}, \beta - 1)\]

The Jacobean matrix of the system (8) is given

\[
J(E_1) = \begin{bmatrix}
-\theta & \theta & 0 \\
\beta - S_3 & -1 & -S_1 \\
S_2 & S_1 & -1
\end{bmatrix}
\]

At the parameter values \(\beta = 14, \beta = 110\), the equilibrium points are:

\[E_1 = (10.45, 10.45, 109), \ E_3 = (10.45, 10.45, 109), \ E_2 = (0,0,0)\]

The Jacobean matrix at \((10.45, 10.45, 109)\)

\[
J(E_1) = \begin{bmatrix}
-15 & 15 & 0 \\
1 & -1 & -10.45 \\
10.45 & 10.45 & -1
\end{bmatrix}
\]

The characteristic equation obtained from (6) at equilibrium \(E_1 (S_1^*, S_2^*, S_3^*)\) is as in the following equation.

\[\omega^3 + 17\omega^2 + 125\omega + (3270) = 0\]

The solution of the characteristic equation gives the eigenvalues. Similarly, the eigenvalues corresponding to \(E_2\) and \(E_3\) are calculated.
Table 2: Equilibria of (11) and their eigenvalues

<table>
<thead>
<tr>
<th>E_i</th>
<th>Equilibria</th>
<th>Eigenvalues</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>$(10.45, 10.45, 109)$</td>
<td>$(1.1507 + 12.96i, -19.31)$</td>
<td>Unstable</td>
</tr>
<tr>
<td>E_2</td>
<td>$(0,0,0)$</td>
<td>$(33.2189, -1, -49.22)$</td>
<td>Unstable</td>
</tr>
<tr>
<td>E_3</td>
<td>$(-10.45, -10.45, 109)$</td>
<td>$(1.1507 + 12.96i, -19.31)$</td>
<td>Unstable</td>
</tr>
</tbody>
</table>

Fig. 4. Distribution equilibrium points of the fractional-order system.

Fig. 5. Stability of the fractional-order system.
Fig. 6. Chaotic attractor for \(\alpha = 0.98 \), \(h=0.1 \) and \(t=2000 \) in a \(y-x \) plane.

Fig. 7. Chaotic attractor for \(\alpha = 0.98 \), \(h=0.1 \) and \(t=1500 \) in a \(y-x \) plane.

Fig. 8. Chaotic attractor for \(\alpha = 0.98 \), \(h=0.1 \) and \(t=500 \) in a \(y-x \) plane.
4. **Conclusion:**

We proposed a new numerical approach to solve fractional differential equations (Linear and nonlinear) made up from this kind of derivative. The novel scheme technique combines polynomials and Lagrange theorems with fractional calculus' basic theorem. When compared to precise answers, the suggested technique can be demonstrated to be extremely accurate. The method is simple, effective and can be widely applied as it shows chaos, the stability analysis of this method has discussed with error estimation. Effective and adaptable to many fractional systems, this technique is widely used.

References:

