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Abstract: The current research aims to compare different data clustering algorithms, focusing on 

algorithms that use Mixture distributions. We will discuss how these algorithms work, their 

advantages and disadvantages, and their efficiency in clustering diverse data in size and structure. 

A comprehensive analysis will also be conducted by applying these algorithms to multiple data sets 

to evaluate the performance, efficiency, and accuracy of clustering by using them in Mixture 

distributions. (Mixture Exponential Distribution, Mixture Weibull Distribution, Mixture Pareto 

distribution) were chosen as applications to study clustering algorithms. Comparing different data 

clustering algorithms when using Mixture distributions, which are a type of statistical models that 

depend on merging several probability distributions to represent data, as well as the widespread 

use of these algorithms in data analysis and extracting patterns of that data, which makes them a 

powerful tool in many practical applications such as classification, pattern recognition, and 

statistical predictions. After a detailed presentation of the different clustering algorithms, the 

algorithm evaluation mechanism, and some Mixture distributions, the researcher concluded that 

each algorithm has a work that cannot be dispensed with or replaced and that all algorithms are 

highly efficient in their field of work if the conditions and specifications of each algorithm are 

adhered to. Therefore, the researcher recommended dealing with these algorithms, each according 

to its work, to obtain the best results. 

Keywords: Data Clustering Algorithms, Mixture Distributions, K-Means Algorithm, Mean Shift 

Algorithm, DBSCAN Algorithm, Agglomerative Hierarchical Clustering Algorithm, Expectation 

And Maximization Algorithm EM. 

1. Introduction 

The scientific revolution and the development of modern technological capabilities 

during the past years have led to new methods for dealing with data, including collecting 

and mining data and other methods accompanying this tremendous scientific 

development in information technology. 

A number of the most widely used and famous clustering algorithms among 

researchers, programmers and statisticians have been studied, including, but not limited 

to ((K-Means algorithm, MeanShift algorithm, DBSCAN algorithm, Agglomerative 

Hierarchical Clustering algorithm, EM expectation and maximisation algorithm)) and 

other standard algorithms in this field and research on comparing performance through 

several measures such as accuracy, efficiency and stability. 
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Mixture distributions are characterised by the ability to model complex data, as the 

algorithms used in applying these models vary in accuracy, flexibility, and efficiency. The 

choice of the appropriate algorithm depends on the nature of the data and the purpose of 

the analysis. This research is considered a step towards a deeper understanding of how to 

choose and apply appropriate algorithms in different contexts, as the researcher provides 

an overview of comparing clustering algorithms using Mixture distributions, and the 

research can be developed more deeply by studying specific cases and practical 

applications to analyse the performance of each algorithm in multiple scenarios. 

This study will provide a scientific and objective comparison that helps researchers 

and practitioners determine the most appropriate algorithm for use in various data 

collection applications. Therefore, this research is an essential contribution to 

understanding the performance of clustering algorithms and guiding researchers towards 

the most appropriate algorithm for each data type. 

2. Materials and Methods 

Research problem: 

Data clustering is one of the most prominent fields of data science and machine 

learning, as it aims to divide a large set of data into smaller groups, each of which has 

common characteristics. These techniques are widely used in data analysis and pattern 

discovery, and data clustering algorithms are among the most essential tools that help 

simplify and understand complex structures in data. 

With the availability of many different algorithms for data clustering, such as K-

Means algorithm, MeanShift algorithm, DBSCAN algorithm, Agglomerative Hierarchical 

Clustering algorithm, EM algorithm through Mixture distributions such as Mixture 

exponential distribution, Mixture Weibull distribution and Mixture Pareto distribution, 

the need arises to compare these algorithms in terms of performance, accuracy, and 

effectiveness when dealing with different data sets and Mixture distributions. 

Importance of the research: 

Clustering algorithms in light of Mixture distributions are essential in many fields, 

including data analysis, artificial intelligence and applied sciences. The importance of the 

research can be summarised in the following points: 

1. Complex data analysis, as clustering algorithms are used to understand and analyse 

complex data through Mixture distributions that are more powerful in identifying 

hidden and overlapping patterns in the data. 

2. Comparing algorithms is essential in revealing the most effective algorithms in 

certain circumstances, which improves the accuracy and speed of the performance 

of the clustering algorithms. 

3. In most cases, the data is heterogeneous; therefore, Mixture distributions provide an 

effective way to interpret this type of data. 

4. By comparing clustering algorithms, it is possible to determine which one provides 

more accurate and reliable results based on the data's nature, which helps avoid 

errors resulting from the misuse of a particular algorithm. 

5. This type of research contributes to enhancing analytical capabilities to deal with 

modern and complex data, which helps make informed decisions and improve 

models' efficiency in various fields. 

Research objective: 

The current research aims to study and analyse the performance of several data 

collection algorithms when using Mixture distributions and try to understand which of 

these algorithms is more effective or accurate in collecting unclassified data, in addition to 

providing recommendations on the use of specific collection algorithms in particular 
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contexts based on their performance in analysing Mixture distributions. The research 

objectives included the following: 

1. Determine the efficiency and accuracy by comparing algorithms in data collection 

and dealing with data that contain complex or asymmetric distributions. 

2. Test the algorithms on accurate data and observe their performance and how the 

algorithms work with data that may not necessarily follow ideal probability 

distributions. 

3. Compare the work of each algorithm in terms of stability and adaptation, in addition 

to dealing with challenges in the data if it is irregular or contains abnormal values. 

4. Identify the most effective areas of use for each algorithm. 

5. Study the impact of algorithms on different factors such as data size, distribution, 

and the extent to which performance is affected by changes in these factors. 

3. Results and Discussion 

The concept of clustering algorithms: 

Algorithms can be considered a series of instructions and commands arranged by 

the programmer, statistician, or others to obtain sequential results. They are also a recipe 

for professionally processing data types. Many algorithms are adopted in programming 

processes, but we will deal with clustering algorithms in this research. 

Data clustering processes are the process of dividing data and placing it in similar 

groups. It is one of the branches of data mining processes. The clustering algorithm divides 

data into several groups, as the similarity between points within a specific group is more 

excellent than between two points within two groups. The idea of clustering data is simple 

and very close to the human way of thinking, as the more we deal with a large amount of 

data, the more we tend to summarise the vast amount of data into a small number of 

groups or categories, and this is from To facilitate the analysis process (Al-Dhafri, 2024: 

38). 

The clustering algorithm can also be defined as creating groups of similar or related 

data. This is done by analysing the data, identifying similar elements, and grouping them 

into groups. Clustering algorithms are used in various fields, such as machine learning, 

data science, image processing, deep learning, biological learning, and others. The 

clustering algorithm aims to organise data, reduce complexity, improve performance, and 

better understand the data. 

Clustering algorithms are widely used to organise, classify, compress, and build a 

data arrangement model. If we find a data cluster, it is possible to create a model of the 

problem based on those clusters through which similar or related data can be grouped. 

This is done by analysing the data, identifying similar elements, and grouping them into 

coherent groups. 

Advantages of clustering algorithms: 

Clustering algorithms are of great importance in classifying data into subgroups that 

can be controlled, and these algorithms have been used in several fields to provide data 

descriptions, including (Allyn and Robert, 2001:41): 

1. Clustering algorithms effectively simplify data sets and create a classification for 

data sets. 

2. Identifying data patterns within groups. 

3. Detecting hidden structures in data. 

4. Identifying outliers. 

5. Compressing the prominent information of those groups (to store and retrieve 

information efficiently). 

6. Analysing their structure in some statistical analyses through automatically 

clustering the data set. 
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7. It is possible to conclude the behaviour of the data set without the need for a detailed 

or even superficial understanding of that data, and this is of particular importance 

for work in modelling and simulation. 

8. Clusters allow for a general prediction of where model parameters tend to be located 

within the state space and their compatibility with specific behaviour patterns within 

the simulation. 

9. Assisting in decision-making processes. 

The most important disadvantages and obstacles of clustering algorithms: 

Clustering algorithms are powerful tools in data analysis processes, as they group 

elements and points in data. Despite their incredible benefits, they are not without some 

disadvantages, including (Brian et al., 2011): 

1. Clustering algorithms are affected by noise and outliers, reflected in their 

performance. 

2. Some algorithms are not suitable for extensive data. They may require a lot of time 

and computational resources, making them impractical for some applications. 

3. Some clustering algorithms, especially those that rely on distance measurements, 

work well with spherical or convex clusters, but they have difficulty with clusters 

that have irregular or complex shapes. 

4. Similarity criteria vary depending on the type of data and the algorithm used, 

making the selection of the appropriate criterion challenging in some cases. 

5. Clustering results are sometimes difficult to interpret, and there are no clear 

indications of why the data falls into specific groups. 

6. Only binary vectors are capable of being classified. However, they are included due 

to some advantages of the algorithm (Allyn and Robert, 2001:48). 

Types of clustering algorithms: 

There are many clustering algorithms that researchers rely on to analyse data, but 

we will highlight the most important and most commonly used of these algorithms, which 

are as follows: 

1. K-Means algorithm: The (K-Means) algorithm is one of the most widely used 

algorithms in data clustering. This algorithm works by identifying and clustering data 

in K different groups, where the number of groups K is determined in advance. The 

algorithm determines the centre of each group and tries to reduce the distance between 

the elements in the group and the specified centre. The algorithm continues to iterate 

and improve the clustering until an ideal clustering is reached. The primary step in 

clustering using K-Means is to determine the number of groups K and assume the 

center of these groups. We can take any random observations as the initial center, or 

the first K observations in the sequence can also be the initial center (Puzicha et al., 

2000: 605). 

K-Means algorithm steps (Christopher, 2006: 423-428): 

Step 1. We start by deciding on the value of k = the number of clusters, i.e., impose 

a value of (k). 

Step 2. Set any initial part that divides the data into k clusters, and you can assign 

samples randomly or systematically as follows: 

- Take the first k training sample as single-element clusters. 

- Assign each remaining sample (N-k) to the cluster with the closest center of gravity. 

After each assignment, recalculate the center of gravity of the acquired cluster. 

Step 3. Take each sample in sequence and calculate its distance from the center 

of gravity of each of the clusters. If the sample is not currently in the cluster with the 

closest center of gravity, swap this sample to that cluster and update the center of 

gravity of the cluster that gains the new sample and the cluster that loses the sample. 

Step 4. Repeat step 3 until convergence is achieved, i.e., until passing through the 

sample does not cause new assignments. 

2. MeanShift algorithm: 
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The MeanShift algorithm aims at the clustering process, which discovers 

clusters in the density of a series of samples. It is an algorithm based on the center of 

gravity, which updates the candidates for the center of gravity to be the average of the 

points within a particular region. The candidates are filtered in the post-processing 

stage to remove duplicate repetitions to form the final set of data center of gravity for 

the central algorithm; in other words, the goal is to determine the location of the central 

points of each group by updating the sliding window, updating the points within it, 

and then taking their averages as the center of the group in the case of Mixture 

distributions, the data can be derived from several elemental distributions. The 

MeanShift algorithm is used to identify clusters within these Mixture distributions 

without knowing the number of distributions or their shapes (Chunxia and Meng, 

2010). 

MeanShift algorithm steps (Abdulmunen, 2012: 46): 

Step 1: Choose a set of existing data points, as all or some of the points can be used. 

Step 2: Choose the search range and specify the size of the window, whether circular 

or spherical, surrounding each point. 

Step 3: Calculate each point's moving mean (mean-shift) and specify the neighbours 

within the search range. 

Step 4: Calculate the center of mass for all points within the search range. 

Step 5: Move the points towards the new center. 

Step 6: Repeat steps (2) and (3) until the points stop moving. 

Step 7: The points will gather, generating a cluster shape, and each group that 

approaches each other can be considered a single cluster, and the classification will 

be based on the centers of the clusters gathered. 

Finally, these clusters with their centers will be gathered as points close to each other 

within a specific range. 

3. DBSCAN algorithm: 

This algorithm clusters asymmetric data that does not follow the usual pattern. 

This algorithm works by identifying dense points in the data and grouping them. The 

algorithm depends on finding the direct neighbours of each end and expanding the 

clusters based on specific rules. 

The DBSCAN algorithm is one of the practical density-based clustering 

algorithms. It is simple and creates a cluster in a random form. It also collects 

information such as noise and outliers. The DBSCAN algorithm is also characterised 

by speed and efficiency with large databases. It has two inputs: the first is the radius, 

and the second is the minimum number of points in the radius. The general idea of 

DBSCAN is based on finding the minimum number of points in the radius space to 

form clusters. Otherwise, if the minimum number of points is not in the radius, it will 

be marked as noise (Raval and Jani, 2015: 72 – 76). DBSCAN algorithm steps (Schubert, 

2017): 

Step 1: A point is randomly selected within the data. 

Step 2: Determine the points that fall within the selected point. 

Step 3: If the surrounding and neighbouring points of the selected point are greater 

than or equal to (MinPts), it is a fundamental point, and a cluster is formed that 

includes all points adjacent to the previously selected essential point. 

Step 4: If the surrounding and neighbouring points of the selected point are more 

minor than (MinPts), it is a noise point and does not form any cluster. 

Step 5: Repeat the process to ensure all points are added to the cluster. 

Step 6: Move to a new unclassified point and repeat the process until all points are 

classified. 

Step 7: End the process after classifying all points as part of a specific cluster within 

the data or as noise points. 

4. Agglomerative Hierarchical Clustering Algorithm: 
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This algorithm works by merging similar elements to form larger clusters. The 

algorithm starts by assigning each element to a single cluster and then combines the 

clusters based on similarity. This process is repeated until large clusters containing all 

similar elements are formed. Agglomerative hierarchical clustering is a hierarchical 

clustering algorithm and one of the cluster analysis algorithms used to collect data into 

groups or clusters. It starts by merging individual points, and each point is a cluster in 

itself in larger groups until a single cluster that includes all points is formed. 

The advantages of this algorithm are that it does not need to specify the number 

of clusters in advance; in addition to that, it gives a comprehensive view of the data in 

the form of a hierarchical tree. Still, its disadvantage is that it is expensive in terms of 

calculations, especially with extensive data. It also depends on the researcher's 

distance, which may significantly affect the final results if inaccurate (LaPlante, 2015). 

Steps of the Agglomerative Hierarchical Clustering Algorithm: (Mok et al., 2012) 

Step 1: Each data point is considered a separate cluster from the rest of the data. 

Step 2: The distance between the clusters is calculated. 

Step 3: The closest clusters whose data is most similar to each other are merged to 

form a new cluster. 

Step 4: The process of calculating distances and merging clusters is repeated until a 

single cluster, which includes all points, is formed. 

Step 5: Representing the merging process as a hierarchical tree. 

5. EM Algorithm: 

According to the study (Nilashi et al. 2015: 542), EM Algorithm includes 

applications for calculating maximum likelihood parameters in a statistical model. This 

application is applicable in cases where it is difficult to solve equations directly, as the 

models use latent variables and unknown parameters in addition to known data 

observations. This means that the data either contain missing values, or it is possible 

to reformat the model more only by assuming the presence of additional unobserved 

data points and a latent variable that determines a component of the mixture that 

belongs to each data point. The maximum likelihood solution requires using 

derivatives of the likelihood function, considering every unknown value, i.e. both the 

parameters and the latent variables, which involves solving the resulting equations 

simultaneously. However, this is not usually possible in the case of statistical models 

containing latent variables. Instead, it results in a set of nested equations where the 

solution to the parameters must contain the exact values of the latent variables and vice 

versa. However, while replacing one set of equations, when they are replaced in the 

other set. The advantages of this algorithm are that it can handle incomplete or missing 

data effectively and is suitable for a wide range of problems in statistics and machine 

learning. The disadvantages are that it depends on the choice of initial parameters, and 

performance may be poor if these parameters are far from the optimal solution. They 

may sometimes reach a minimum of the objective function and cannot necessarily 

guarantee reaching the maximum. Steps of the EM (Trevor et al., 2001): 

Step 1: Initialization, where the algorithm starts by choosing initial estimates for the 

parameters we want to estimate. These estimates can be chosen randomly or using 

any prior knowledge if available. 

Step 2: The expectation step where we calculate the expected values for the 

unobserved data based on the current parameters. 

Step 3: The maximisation step, where the expected values calculated in the 

expectation step are used, updates the parameter estimates by maximising the 

probability function. 

Step 4: The iteration step where the expectation and maximisation steps are repeated 

until the parameter change stops and reaches a specific stopping value 

(convergence). 
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Step 5: Upon reaching the convergence limit, the calculated parameters are the 

parameter estimates that maximise the probability function based on the observed 

and expected data. 

Applications and uses of assembly algorithms: 

Since ancient times, scientists in mathematics have used algorithms to solve complex 

mathematical equations and problems, and their use continues to this day. Algorithms are 

integral to mathematical operations, but algorithms have developed significantly to 

include their use more widely in computer science, statistics, and others. Today, all 

programs, applications, and operating systems are algorithms that depend directly on data 

processing, performing calculations and logical analyses, and solving mathematical 

equations. On the one hand, algorithms are used in medical, engineering, physical, and 

economic fields from scientific aspects. We will mention some uses, including (Al-Dhafri, 

2024): 

• Using algorithms in social media. 

• Using them in search engines (Google and others). 

• They are used in statistical fields to predict the future, such as weather, temperature, 

rain, etc. 

• Detecting criminals through facial recognition. 

• Used in data encryption. 

• Used in geographic and spatial analysis (GPS). 

• Smart robots. 

• Artificial intelligence applications. 

• Detecting data patterns. 

• Genetic data analysis and discovering new types of genes. 

Mixed Distributions: 

The concept of mixed distributions Mixture Distribution: 

In most statistical applications, the probability behaviour of observations is 

heterogeneous, as these heterogeneous observations are clustered into homogeneous 

subsets. The observations of subsets within the community may have a probability 

behaviour with a similar probability density function but with different parameters, i.e. 

they have the same distribution but with other parameters, and the probability function of 

these subsets may be different, i.e. they have a different distribution. In this case, the 

distribution of the total community is a linear combination of the probability density 

functions of the subsets, which is called the Mixture distribution (Abdul Hussein and 

Hussein, 2017: 124). 

Mixture probability distributions result from mixing multiple probability 

distributions and can be binary, triple, or more distributions depending on the nature of 

the data. These distributions are characterised by the fact that they result from more than 

one different probability distribution or similar distributions with other parameters, which 

makes them more explanatory in describing the phenomena that result from multiple 

probability distributions. These distributions have many applications in medicine, 

engineering, agriculture, industry, and others (Garavaglia et al., 2011). (Al-Bayati, 2012: 11-

12) defined Mixture distributions as "a collection of heterogeneous components of 

statistical data, which occurs when a sample is drawn from a heterogeneous community 

whose probability functions are different or similar but with different parameters for each 

partial community. In this case, statistical tests are required to determine whether the 

Mixture distribution is from the same family instead of the single distribution. 

Some mixed distributions: 

There are many Mixture distributions, but our study will be limited to three Mixture 

distributions, which are: 

Mixed exponential distribution: Mixture Exponential Distribution: 
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It is a Mixture probability model, called the Mixture exponential distribution, and its 

probability and cumulative density function are as follows (Al-Duri and Bahiya, 2018: 2-

3): 

f(z, φ) = ∑
1

λi

k
j=1 exp (− z

λi
⁄ ) pi          i = 1,2, … , k                 …   (3)   

Whereas: 
φ = (λ1, … , λk, p1, … , pk)          

λi  : represents the scaling parameter of the exponential distribution. 

 pi: represents the mixing ratio parameter for compound i. 

0 < pi < 1               ∑ pi
k
i=1 = 1         ∫ f(x) d(x) = 1 

Mixture Weibull Distribution : 

The Mixture Weibull distribution is a statistical model that combines two or more 

Weibull distributions. This model accurately describes data that exhibits complex or multi-

model behaviour. Generally, it is a probability distribution commonly used in reliability 

data analysis. The Mixture Weibull distribution is characterised by a probability density 

function in the following form (Al-Wakeel, 2010: 150-152): 

f(x) = w {
β1x

β1−1

α1
β1

e
−[(

x
α1

)
β1

]
} + (1 − w) {

β2(x − y)β2−1

α2
β2

e
−[(

x−y
α2

)
β2

]
} 

Mixture Pareto Distribution   

It is a Mixture probability model called the general Mixture Pareto distribution. It is 

a probability distribution often used to model phenomena characterised by a heavy-tailed 

distribution, meaning that the probability of large values is more significant than what 

might be expected from other distributions. The probability density function and the 

aggregate are given in the following form (Garavaglia et al., 2011: 521-524): 

f(z, φ) = ∑
1

λi

k
i=1 (1 + Ԑi  

y

λi
)
−(

1+Ԑi
Ԑi

)
pi      ,     i = 1,2, … , k          

Estimating mixed distributions: 

Estimating the mixed exponential distribution: 

Estimating the mixed exponential distribution using the Maximum Likelihood 

Estimation method: 

Assuming (x1, x2, … , xn(Observations follow a Mixture exponential distribution, so 

its estimate will be as follows: (Bhat et al.,2018:44):   

1 = ∑ 𝑙𝑜𝑔 [𝑝𝑒−𝑥𝑖 +
(1 − 𝑝)𝜔+1𝑋𝑖

𝜔𝑒−𝑋𝑖

(𝜔 + 1)
]

𝑛

𝑖=1

 

Estimates of the unknown parameters are obtained by partially differentiating the 

parameters of interest and setting them equal to zero; we get the following equation: 

𝜕𝑙

𝜕
= ∑

[
 
 
 
 𝜕
𝜕

{𝑝𝑒−𝑥𝑖 +
(1 − 𝑝)(𝜔+1)𝑋𝑖

𝜔𝑒−𝑋𝑖

(𝜔 + 1)
}

𝑝𝑒−𝑥𝑖 +
(1 − 𝑝)(𝜔+1)𝑋𝑖

𝜔𝑒−𝑋𝑖

(𝜔 + 1) ]
 
 
 
 𝑛

𝑖=1

= 0 

𝜕𝑙

𝜕𝜔
= ∑

[
 
 
 
 𝜕
𝜕𝜔

{𝑝𝑒−𝑥𝑖 +
(1 − 𝑝)(𝜔+1)𝑋𝑖

𝜔𝑒−𝑋𝑖

(𝜔 + 1)
}

𝑝𝑒−𝑥𝑖 +
(1 − 𝑝)(𝜔+1)𝑋𝑖

𝜔𝑒−𝑋𝑖

(𝜔 + 1) ]
 
 
 
 𝑛

𝑖=1

= 0 

𝜕𝑙

𝜕𝑃
= ∑

[
 
 
 
 𝜕
𝜕𝑃

{𝑝𝑒−𝑥𝑖 +
(1 − 𝑝)(𝜔+1)𝑋𝑖

𝜔𝑒−𝑋𝑖

(𝜔 + 1)
}

𝑝𝑒−𝑥𝑖 +
(1 − 𝑝)(𝜔+1)𝑋𝑖

𝜔𝑒−𝑋𝑖

(𝜔 + 1) ]
 
 
 
 𝑛

𝑖=1

= 0 

The above system of equations is non-linear and cannot be solved analytically. The 

Newton-Raphson procedure is implemented to obtain the parameter estimates to 

overcome this drawback. 

Estimating the mixed exponential distribution using the least squares method:  
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This method is based on the existence of a regression relationship between the 

experimental F̂ and the F distribution, taking into account the ordered observations. (x(1) ≤

x(2) ≤ ⋯ ≤ x(n)) versus experimental distribution,  𝐹(𝑥(𝑖)) ≡
𝑖

𝑛+1
 The equation can be given 

as follows (Yilmaz and Buse,2015:56): 

𝑄(∅) = ∑(𝐹(𝑥(𝑖);∅) − 𝐹̂(𝑥(𝑖)))
2

𝑛

𝑖=1

 

𝑑𝑄

𝑑𝛼
= ∑ (

𝑖

𝑛 + 1
− 𝛼 (1 − 𝑒

−𝑥(𝑖)
1
𝜃1) − (1 − 𝛼) (1 − 𝑒

−𝑥(𝑖)
1
𝜃2))

𝑛

𝑖=1

(𝑒
−𝑥(𝑖)

1
𝜃1 − 𝑒

−𝑥(𝑖)
1
𝜃2) = 0 

𝑑𝑄

𝑑𝜃1

= ∑ (
𝑖

𝑛 + 1
− 𝛼 (1 − 𝑒

−𝑥(𝑖)
1
𝜃1) − (1 − 𝛼) (1 − 𝑒

−𝑥(𝑖)
1
𝜃2))

𝑛

𝑖=1

(
𝛼𝑥(𝑖)

𝜃1
2 𝑒

−𝑥(𝑖)
1
𝜃1) = 0 

𝑑𝑄

𝑑𝜃2

= ∑ (
𝑖

𝑛 + 1
− 𝛼 (1 − 𝑒

−𝑥(𝑖)
1
𝜃1) − (1 − 𝛼) (1 − 𝑒

−𝑥(𝑖)
1
𝜃2))

𝑛

𝑖=1

(
(1 − 𝛼)𝑥(𝑖)

𝜃2
2 𝑒

−𝑥(𝑖)
1
𝜃2) = 0 

Since the equations obtained after differentiation are related to θ, it isn't easy to get 

solutions. Therefore, it is necessary to use numerical methods. 

Estimating the mixed Weibull distribution : 

The probability function of the Mixture Weibull distribution can be shown as follows 

(Al-Wakeel et al., 2009: 6-7):. 

L(α, β) = ∏ f(X1, α, β)

n

i=1

 

Estimating the mixed Weibull distribution using the Maximum Likelihood Method: 

The maximum likelihood estimator (MLE) for a two-parameter Weibull distribution 

can be obtained by solving the equations resulting from setting the partial derivatives of 

L(α,β( equal to zero. 

L(α, β) = ∏ f(
𝛽𝑋𝑖

𝛽−1

𝛼𝛽
)e−(

𝑋𝑖
𝛼

)𝛽
n

i=1

 

𝜕𝑙𝑛𝐿

𝜕𝛽
=

𝑛

𝛽
+ ∑𝑙𝑛𝑋𝑖

𝑛

𝑖=1

−
1

𝛼
∑𝑋𝑖

𝛽

𝑛

𝑖=1

ln 𝑋𝑖 = 0 

𝜕𝑙𝑛𝐿

𝜕𝛼
=

𝑛

𝛼
+

1

𝛼2
∑𝑋𝑖

𝛽

𝑛

𝑖=1

= 0 

Then 𝛽̂ Is the solution of : 

∑ (𝑋𝑖
𝛽̂
𝑙𝑛𝑋𝑖)

𝑛
𝑖

∑ 𝑋𝑖
𝛽̂𝑛

𝑖=1

−
1

𝛽̂
−

1

𝑛
∑𝑙𝑛𝑋𝑖

𝑛

𝑖=1

= 0 

When the shape parameter is estimated, the scale parameter can also be calculated 

by: 

𝛼̂ = (
1

𝑛
∑ 𝑋𝑖

𝛽

𝑛

𝑖=1

)
1

𝛽̂ 

As for the three-parameter Mixture Weibull distribution, its estimate will be as 

follows (Al-Wakeel et al., 2009: 7): 

𝐿(𝛼, 𝛽, 𝛾) =
𝛽𝑛

𝛼𝛽𝛼
[∏(𝑋𝑖 − 𝛾)𝛽−1

𝑛

𝑖=1

] 𝑒
1

𝛼𝛽
∑ (𝑋𝑖−𝛾)𝛽𝑛

𝑖=1  

By adjusting the partial derivative of the previous equation concerning α ,β and γ 

On zero and by solving the following set of equations simultaneously, we obtain the 

following estimate: 

α̂𝛽̂ −
1

𝑛
∑(𝑋𝑖 − 𝛾)𝛽̂

𝑛

𝑖=1

= 0 

∑ (𝑋𝑖 − 𝛾)𝛽̂𝑛
𝑖=1 𝑙𝑛(𝑋𝑖 − 𝛾)

∑ (𝑋𝑖 − 𝛾)𝛽̂𝑛
𝑖=1

−
1

𝛽
−

1

𝑛
∑𝑙𝑛(𝑋𝑖 − 𝛾) = 0

𝑛

𝑖=1
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(𝛽̂ − 1) ∑(𝑋𝑖 − 𝑦̈)−1 − 𝛽̂𝛼̂−𝛽̂ ∑(𝑋𝑖 − 𝑦̂)𝛽̂−1 = 0

𝑛

𝑖=1

𝑛

𝑖=1

 

Estimating the mixed Weibull distribution using the least squares method (Al-Wakeel 

et al., 2009: 8-9): 

This linear equation is as follows: 

ln ln [
1

1 − 𝐹(𝑥)
] = 𝛽 ln 𝑥 − 𝛽 ln 𝛼 

Then: 

𝑋̅ =
1

𝑛
∑𝑙𝑛 {𝑙𝑛 [

1

(1 −
𝑖

𝑛 + 𝑖
)
]}

𝑛

𝑖=1

 

𝑦̅ =
1

𝑛
∑ ln𝑥𝑖

𝑛

𝑖=1

 

β =

{𝑛 ∑ (ln 𝑥𝑖). (𝑙𝑛 [𝑙𝑛 [
1

(1 −
𝑖

𝑛 + 1
)
]]𝑛

𝑖=1 } − {∑ 𝑙𝑛 [ln (
1

1 −
𝑖

𝑛 + 1

]𝑛
𝑖=1 ∑ ln 𝑥𝑖

𝑛
𝑖=1 }

{𝑛 ∑ (ln 𝑥𝑖)
2𝑛

𝑖=1 } − {∑ (ln 𝑥𝑖
𝑛
𝑖=1 )}2

 

Then: 

𝛼̂ = 𝑒
(
𝑦̅−𝑥̅

𝛽̂
)
 

Least squares estimates of the Weibull distribution can be obtained. α, β By choosing 

the estimates, which are as follows: 

𝛼̂(𝛾) = {∏[𝑋𝑖 − 𝛾]

𝑛

𝑖=1

}

1
𝑛

{∏[−log [𝐸(𝜇𝑖)]]

𝑛

𝑖=1

}

1
𝑛
𝛽(𝛾)

 

And 

𝛽̂(𝛾) =
∑ (𝑅𝑖 − 𝑅̅𝑖)[log(𝑥𝑖 − 𝛾) − (𝑙𝑜𝑔𝑥)𝑡]𝑛

𝑖=1

[∑ (log(𝑥𝑖 − 𝛾) − (𝑙𝑜𝑔𝑋)𝑡𝑛
𝑖=1 ]2

        𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … . , 𝑛  

𝑅𝑖 = log[− log 𝐸(𝜇𝑖)]      𝑎𝑛𝑑   𝑅̅ =
1

𝑛
(∑𝑅𝑖

𝑛

𝑖=1

)  𝑎𝑛𝑑  (𝑙𝑜𝑔𝑥)𝑡 = (
1

𝑛
) {∑ log (𝑥𝑖 − 𝛾)

𝑛

𝑖=1

} 

Estimating the mixed Pareto distribution: 

 Estimating the mixed Pareto distribution using the maximum likelihood method: 

In this topic, we will discuss the maximum likelihood method for estimating the 

Pareto distribution as follows: 

Let's assumeθ = (𝛼, 𝛽, 𝜔) It is a vector of model parameters(𝑋1, 𝑋2, … , 𝑋𝑛) (Random 

variables and (θ( minimise the logarithmic probability function as follows ( Nareerat et al., 

2015: 203-204) : 

𝐿(𝜃) = ∏{
1

𝛽
(
𝑋𝑖

𝛽
)

−(𝛼+1)

[(1 − 𝜔)𝛼 +
𝜔(𝛼 − 1)𝑋𝑖

𝛽
]}

𝑛

𝑖=1

 

𝑙𝑜𝑔𝐿(𝜃) = ∑ 𝑙𝑜𝑔 [1 − 𝜔)𝛼 +
𝜔(𝛼 − 1)𝑋𝑖

𝛽
]

−1

− 𝑛𝑙𝑜𝑔𝛽 − (𝛼 + 1) ∑𝑙𝑜𝑔 (
𝑥𝑖

𝛽
)

𝑛

𝑖=1

𝑛

𝑖=1

 

The components corresponding to the model parameters are calculated, and the 

results are normalised to zero. We will obtain the following equation: 

𝜕𝑙𝑜𝑔𝐿(𝜃)

𝜕𝛼
= ∑[𝛼 −

𝜔𝑋𝑖

𝛽 − 𝜔𝛽 + 𝜔𝑋𝑖

]
−1𝑛

𝑖=1

− ∑ log (
𝑋𝑖

𝛽
)

𝑛

𝑖=1

 

𝜕𝑙𝑜𝑔𝐿(𝜃)

𝜕𝜔
= ∑[𝜔 +

𝛼𝛽

𝛼𝑋𝑖 − 𝑋𝑖 − 𝛼𝛽
]
−1𝑛

𝑖=1

 

since it's 𝑋 ≥ 𝛽 Maximum probability estimate 𝛽 It is a first-class statistic X(1)  The 

maximum probability estimates for the parameters α and ω .We use the command nlm in 

the program R statistical package. 
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Estimating the mixed Pareto distribution using the Least Squares (LS) and Weighted 

Least Squares (WLS): 

The LS method minimises the squared difference between the experimental and 

theoretical CDFs. This method is easy to implement and interpret, making it accessible for 

various applications. However, LS assumes homogeneity, which is difficult to achieve, and 

here we need the weighting scheme used in the WLS method to heteroscedasticity by 

assigning larger weights to observations closer to the center of the sample and smaller 

weights to observations closer to the edges of the sample. In addition, both LS and WLS 

methods are computationally intensive, as they rely on the CDF, which needs to be 

calculated numerically. 

Least Squares (LS) Estimator of 𝜽: (Frederico and Mina, 2024) 

𝜃̂𝐿𝑆 = (𝑐̂𝐿𝑆, ̂1
𝐿𝑆

, ̂2
𝐿𝑆

)  𝑐𝑎𝑛 𝑏𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑎𝑠 ∶ 

𝜃̂𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝐹(𝑥(𝑖)\𝜃) −
𝑖

𝑛 + 1
)

2𝑛

𝑖=1

} 

Furthermore, the parameters were estimated using the weighted least squares (WLS) 

method, which is denoted by 

𝜃̂𝑊𝐿𝑆 = (𝑐̂𝑊𝐿𝑆, ̂1
𝑊𝐿𝑆

, ̂2
𝑊𝐿𝑆

)  𝑐𝑎𝑛 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦: 

𝜃̂𝑊𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
(𝐹(𝑥(𝑖)\𝜃) −

𝑖

𝑛 + 1
)

2𝑛

𝑖=1

} 

Simulation Study: 

The clustering algorithms were applied through Mixture distributions on a set of 

data, which is unrealistic data generated for the study. Its sample size was (40, 80, 120, 160, 

200) n = single, and it was applied with parameters (=1) and the value of () was changed 

to be (0.5, 1, 2) respectively. Note Table (1), (2), and (3), respectively, noting that the same 

data was applied to all types of Mixture distributions to measure the effect of clustering 

algorithms on types of Mixture distributions, and the results were as follows in order: 

Simulation application on the Mixture exponential distribution according to the 

parameters and sample size: Data were taken to simulate the Mixture exponential 

distribution with parameters (=0,5, =1), (=1, =1)and ( =2, =1) ( and with sample sizes 

of (n= 40, 80, 120, 160, 200)) and the results were as shown in Table (1) below. 

Table (1) Simulation of clustering algorithms and samples taken from the mixed 

exponential distribution 

 

Estimation of Mixture exponential distribution with parameters 

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.5010 0.5015 0.5345 0.6022 1.0637 

80 0.4935 0.4988 0.5189 0.5714 1.0451 

120 0.4912 0.4989 0.5168 0.5611 1.0391 

160 0.4846 0.4986 0.5081 0.5358 1.0224 

200 0.4848 0.4997 0.5008 0.5202 1.0128 

Estimation of Mixture exponential distribution with parameters 

 =  =  Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 1.0174 1.0127 1.0891 1.2502 1.4356 

80 1.0116 1.0042 1.0689 1.1989 1.3941 

120 0.9894 0.9986 1.0536 1.1636 1.3616 

160 0.9867 0.9987 1.0403 1.1402 1.3428 

200 0.9861 0.9937 1.0314 1.1234 1.3281 
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Estimation of Mixture exponential distribution with parameters 

 =  =  Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 4.0580 4.0971 4.3751 4.9782 4.6165 

80 3.9909 4.0506 4.2492 4.8226 4.5363 

120 3.9613 4.0104 4.2008 4.6629 4.4321 

160 3.9497 3.9628 4.1440 4.5641 4.3710 

200 3.9285 3.9787 4.1361 4.5300 4.3645 

 

Source: Prepared by the researcher based on the results of the clustering algorithms 

and samples taken from the Mixture exponential distribution. 

Applying the simulation to the mixed Weibull distribution according to the 

parameters and sample size: 

Data were taken simulating a Mixture Weibull distribution with parameters 

(=0,5, =1), (=1, =1)and ( =2, =1) (With sample sizes (n= 40, 80, 120, 160, 200) the 

results were as shown in Table (2) below.  

Table (2) Simulation of clustering algorithms and samples taken from the mixed 

Weibull distribution 

Estimation of the Mixture Weibull distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.5109 0.5078 0.5436 0.6305 1.0816 

80 0.5010 0.5015 0.5345 0.6022 1.0637 

120 0.4979 0.5029 0.5289 0.5871 1.0534 

160 0.4935 0.4988 0.5189 0.5714 1.0451 

200 0.4912 0.4989 0.5168 0.5611 1.0391 

Estimation of the Mixture Weibull distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 1.0174 1.0127 1.0891 1.2502 1.4356 

80 0.9867 0.9987 1.0403 1.1402 1.3428 

120 0.9709 0.9938 1.0107 1.0715 1.2709 

160 0.9745 0.9951 1.0025 1.0416 1.2313 

200 0.9791 0.9965 1.0012 1.0232 1.2022 

Estimation of the Mixture Weibull distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 3.9909 4.0506 4.2492 4.8226 4.5363 

80 3.9613 4.0104 4.2008 4.6629 4.4321 

120 3.8721 3.9817 4.0418 4.2893 4.2038 

160 3.8739 3.9894 4.0209 4.1789 4.1349 

200 3.8939 3.9896 3.9949 4.1013 4.0772 

 

Source: Prepared by the researcher based on the results of the clustering algorithms 

and samples taken from the Mixture exponential distribution. 

Simulation application on the mixed Pareto distribution according to the 

parameters and sample size: 

Data were taken simulating a Mixture Pareto distribution with parameters 

(=0,5, =1), (=1, =1)and ( =2, =1) (With sample sizes (n= 40, 80, 120, 160, 200)  the 

results were as shown in Table (3) below.  
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Table (3) Simulation of clustering algorithms and samples taken from the mixed 

Pareto distribution 

Estimation of Mixture Pareto distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.4896 0.4986 0.5156 0.5571 1.0356 

80 0.4874 0.4978 0.5040 0.5272 1.0169 

120 0.4880 0.4993 0.5000 0.5183 1.0111 

160 0.4872 0.4983 0.5003 0.5126 1.0082 

200 0.4883 0.4994 0.4988 0.5099 1.0064 

Estimation of Mixture Pareto distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9793 0.9943 1.0265 1.1145 1.3186 

80 0.9713 0.9959 1.0039 1.0580 1.2512 

120 0.9712 0.9994 0.9999 1.0320 1.2185 

160 0.9791 0.9965 1.0012 1.0232 1.2022 

200 0.9759 0.9969 1.0005 1.021 1.1938 

Estimation of Mixture Pareto distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 3.9143 3.9774 4.1161 4.4426 4.3002 

80 3.8895 3.9792 4.0276 4.2194 4.1599 

120 3.9039 3.9820 4.0067 4.1358 4.0977 

160 3.8939 3.9896 3.9949 4.1013 4.0772 

200 3.9071 4.0021 3.9994 4.0788 4.0602 

 

Source: Prepared by the researcher based on the results of the clustering algorithms 

and samples taken from the Mixture Pareto distribution. 

Study of actual data: 

The clustering algorithms were applied through Mixture distributions on a set of 

data, which is actual data taken from Al-Sadr Teaching Hospital in Najaf Governorate for 

people with diabetes for the study. Its sample size was the same as the sample in the 

applied example (simulation) and was n= (40, 80, 120, 160, 200) single, and it was applied 

with parameters (=1) and the value of () was changed to be (0.5, 1, 2) respectively. See 

Table (4), (5), (6) respectively. The same data sample size and parameters ,  were applied 

to all types of Mixture distributions to measure the effect of clustering algorithms on types 

of Mixture distributions. The results were as follows: 

Applying actual data to the mixed exponential distribution according to the parameters 

and sample size: 

Actual data were taken that follow a Mixture exponential distribution with 

parameters (=0,5, =1), (=1, =1)and ( =2, =1) (With sample sizes (n= 40, 80, 120, 160, 

200)  the results were as shown in Table (3) below. 

Table (4) Clustering algorithms and samples taken from the mixed exponential 

distribution 
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Estimation of Mixture exponential distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9866 0.9637 0.9765 1.2520 1.1350 

80 0.9782 0.9658 0.9622 1.1986 1.1041 

120 0.9623 0.9684 0.9633 1.1659 1.0864 

160 0.9583 0.9740 0.9614 1.1422 1.0736 

200 0.9540 0.9765 0.9600 1.1261 1.0657 

Estimation of Mixture exponential distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9581 0.9743 0.9514 1.1112 1.0297 

80 0.9633 0.9771 0.9534 1.0921 1.0241 

120 0.9534 0.9801 0.9574 1.0763 1.0179 

160 0.9571 0.9836 0.9586 1.0673 1.0161 

200 0.9562 0.9847 0.9567 1.0593 1.0138 

Estimation of Mixture exponential distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9835 0.9923 0.9809 1.0257 1.0009 

80 0.9827 0.9939 0.9809 1.0212 1.0006 

120 0.9825 0.9945 0.9832 1.0181 1.0003 

160 0.9842 0.9951 0.9833 1.0160 1.0004 

200 0.9846 0.9959 0.9864 1.0140 1.0003 

 

Source: Prepared by the researcher based on the results of the clustering algorithms 

and samples taken from the Mixture exponential distribution. 

Applying actual data to the mixed Weibull distribution according to the parameters and 

sample size: 

Actual data were taken that follow a Mixture Weibull distribution with parameters 

(=0,5, =1), (=1, =1)and ( =2, =1) (With sample sizes (n= 40, 80, 120, 160, 200)  the 

results were as shown in Table (3) below. 

Table (5) Clustering algorithms and samples taken from the mixed Weibull 

distribution 

 

Estimation of the Mixture Weibull distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9782 0.9658 0.9622 1.1986 1.1041 

80 0.9583 0.9740 0.9614 1.1422 1.0736 

120 0.9540 0.9765 0.9611 1.1261 1.0657 

160 0.9405 0.987 0.9662 1.0706 1.0357 

200 0.9437 0.9919 0.9672 1.0418 1.0213 

Estimation of the Mixture Weibull distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9633 0.9781 0.9554 1.1921 1.1246 

80 0.9575 0.9856 0.9596 1.1673 1.1161 

120 0.9562 0.9847 0.9637 1.1593 1.1138 
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160 0.9579 0.9913 0.9645 1.1352 1.1074 

200 0.9671 0.9954 0.9751 1.1206 1.1038 

Estimation of the Mixture Weibull distribution with parameters  

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9842 0.9939 0.9809 1.016 1.0006 

80 0.9846 0.9959 0.9864 1.0212 1.0003 

120 0.9825 0.9945 0.9832 1.0181 1.0003 

160 0.9858 0.9978 0.9884 1.0084 1.0001 

200 0.9889 0.9990 0.9922 1.0000 1.0005 

 

Source: Prepared by the researcher based on the results of the clustering algorithms 

and samples taken from the Mixture Weibull distribution. 

Applying actual data to the mixed Pareto distribution according to the parameters and 

sample size: 

Actual data were taken that follow the Mixture Pareto distribution with parameters 

(=0,5, =1), (=1, =1)and ( =2, =1) (With sample sizes (n= 40, 80, 120, 160, 200)  the 

results were as shown in Table (3) below. 

Table (6) Clustering algorithms and samples taken from the mixed Pareto 

distribution 

Estimation of Mixture Pareto distribution with parameters 

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9497 0.9778 0.9599 1.1101 1.0564 

80 0.948 0.9913 0.9705 1.053 1.0271 

120 0.9522 0.9943 0.9684 1.0349 1.0178 

160 0.9529 0.9949 0.9749 1.0255 1.0128 

200 0.9562 0.9965 0.977 1.0208 1.0107 

Estimation of Mixture Pareto distribution with parameters 

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9568 0.9872 0.9618 1.0522 1.0113 

80 0.9626 0.9942 0.9705 1.0259 1.0051 

120 0.9676 0.9965 0.9758 1.0172 1.0032 

160 0.9723 0.9976 0.9813 1.0125 1.0009 

200 0.9732 0.9979 0.9842 1.0101 1.0016 

Estimation of Mixture Pareto distribution with parameters 

 =  = Through clustering algorithms 

n K-Means MeanShift DBSCAN A. H. C. EM 

40 0.9854 0.9963 0.9853 1.0128 1.0004 

80 0.9879 0.9984 0.9907 1.0063 1.0001 

120 0.9906 0.9991 0.9927 1.0042 1.0001 

160 0.9918 0.9994 0.9943 1.0031 1.0000 

200 0.9927 0.9995 0.9955 1.0025 1.0000 

Source: Prepared by the researcher based on the results of the clustering algorithms 

and samples taken from the Mixture Pareto distribution. 
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4. Conclusion 

1. Each clustering algorithm has characteristics and features suitable for different data 

types. 

2. In the case of the Mixture exponential distribution, we notice a clear division of data 

in the algorithms and the discovery of some heterogeneous groups and groups with 

different densities. 

3. When applying different clustering algorithms to data generated using the Mixture 

Weibull distribution. Each algorithm gives different results based on how the data is 

processed and the groups are discovered, as follows: 

K-Means: The algorithm depends on the pre-specified number of groups and may 

be sensitive to the initial configuration. 

MeanShift: It does not require specifying the number of groups in advance but 

depends on the width of the kernel. 

DBSCAN: It determines the groups based on the density and identifies the outliers. 

Agglomerative Hierarchical Clustering: It builds a tree for clustering, and the 

number of groups can be specified. 

Gaussian Mixture Model: Uses distributed models to find clusters and relies on a 

diverse data distribution. 

4. Applying different clustering algorithms to data generated using the Mixture pytro 

distribution. Each algorithm gives different results depending on how the data is 

processed and discovered for clusters, such as: 

K-Means: This algorithm groups data into clusters based on the distance from the 

cluster centers. It can be sensitive to the shape of the distribution. 

Mean Shift: Relies on the density of points and works well on irregular data shapes. 

DBSCAN: Relies on the density of points and can handle noise. It can discover 

clusters with irregular shapes. 

Agglomerative Hierarchical Clustering: It is useful when clusters with hierarchical 

structures are needed. 

EM (Gaussian Mixture Model): It assumes that the data comes from a Mixture 

distribution of Gaussian distributions. It can be helpful if the data follows multiple 

distributions. 
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