

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 02 Issue: 05 | May 2021 ISSN: 2660-5317

СИНТЕЗ ПОЛОВОГО ФЕРОМОНА СОВКИ AUTOGRAPHA GAMMA (LEPIDOPTERA)

Джумакулов Тургунбой

канд. хим. наук, доцент, Альмалыкский филиал Ташкентского Государственного технического университета им. Ислам Каримова, Узбекистан, г. Алмалык

E-mail: tjumaqulov@umail.uz

Турдибаев Жахонгир Эралиевич

ст. преп., Альмалыкский филиал Ташкентского Государственного технического университета им. Ислам Каримова,

Узбекистан, г. Алмалык

E-mail: jt82@bk.ru

Жумаев Маннон Нафасович

ст. преп., Альмалыкский филиал Ташкентского Государственного технического университета им. Ислам Каримова, Узбекистан, г. Алмалык

E-mail: jt82@bk.ru

Received 29th April 2021, Accepted 6th May 2021, Online 9th May 2021

Анномация- В данной статье описаны методы конденсацией моноацеталпимелинового альдегида с ацетилиденфосфораном с последующим гидролизом полученного ацеталя в цис-7-додеценаль, реакцией последнего с пентаметилентрифосфораном и восстановлением вторичного спирта цис-7-деценол-1, полученного окислением придинийхлорхроматом в конечной цис-7-додеценилацетата, основной компонент полового феромона совки Autographa gamma.

Ключевые слова: Моноацеталь пимелинового альдегида, пентилметилентрифосфоран, цис-7-додеценол-1, спектральные данные, гидролизующие агенты, литий алюмогидрид, гексан

Ведение

В последние годы развивается новый подход к управлению численностью насекомых, базирующийся на успехах биологической науки в понимании механизма коммуникации членистоногих. Установлено, что передача информации в мире насекомых обеспечивается химическими веществами — экзогормонами. К таким низкомолекулярным биорегуляторам относятся феромоны вещества, продуцируемые насекомыми и выделяемые в окружающую среду для внутривидового общения. Экологическая преимущества феромонов перед остальными видами пестицидов, не вызывают сомнений их действие максимально видоспецифический, эффективный,

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 02 Issue: 05 | May 2021, ISSN: 2660-5317

дозы мизерных даже по сравнению с пиретроидами и ювеноидами, они не токсичные и ни оставляют токсичных остатков.

Усилиями химиков различных стран достигнут значительный прогресс в области химии феромонов насекомых. Тем не менее разработка новых регио- и стерео селективных схем синтеза этих низкомолекулярных биорегуляторов из доступного сырья остается актуальной задачей. Разработка метода синтеза совки гамма Autographagamma и их определение биологической активности полового аттрактанта в зависимости от их состава и доз, рекомендации по созданию препаративных форм феромона и их практическому применению в практике зашиты растений [1,2].

Результаты и обсуждение.

Материалы и методы. Феромонные исследования проводятся во многих направлениях — биологическом, физиологическом, химическом, технологическом и т.д. Полевые испытания феромонов является завершающей стадией многих лабораторных исследований и вместе с половым скринингом обосновывают практическое использование их в защите растений.

Первичные исследования половых аттрактантов и их аналогов включают следующие стадии: обнаружение, выделение и идентификация компонентов природных половых феромонов методами хромотографии и масс-спектрометрии; синтез этих соединений; лабораторные испытания синтетических веществ с помощью электроантеннографии и ольфактометрии с целью выявления репеллентных, ингибирующих и неактивных соединению; полевые оценки аттрактивных, биологической активности выявленных компонентов. Выделенные соединения из самок чешуекрылых не всегда дают положительную реакцию на антеннографе или в поведенческих тестах. Установленных случае, когда присутствующие в феромоной железе в минимальной количестве вещества вызывают наибольший электрический импульс рецепторов, и лучшую самцов. C другой поведенческую реакцию стороны, выявленные при широком антеннографическом скрининге активные вещества не всегда имеются в половом феромоне и воздействует на поведение бабочек [3].

Это статья посвящен синтезу половых феромонов насекомых чешуекрылых Lepidoptera. Большое количества цис - моноолефиновых спиртов и их ацетонов было синтезировано с помощью реакции Виттига [4,5]. Выгодный вариант этого процесса взаимодействие алкилидентрифенилфосфоранов с карбонильними соединениями – позволяет получать олефины в виде смесей цис- и транс-

Высокая стереоспецифичность это реакции с целью получения цис- изомера достигается при использовании алифатических фосфоранов и алифатических альдегидов в не полярных растворителях в отсутствии литиевых солей и в диполярных растворителях. Получение илидов и фосфора из соответствующих фосфониевых солей действием бис (триметилсилил) амида щелочного металла с последующим взаимодействием с альдегидами приводит к цис- алкенам с 98% стереохимическими чистотой. Этот метод применен синтез аттрактанта, содержащих одну не предельную связь цис -7-додеценилацетата синтетического феромона совка гамма Autographa gamma.

Взаимодействие карбэтоксиметилентрифенил-фосфорана (II)

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 02 Issue: 05 | May 2021, ISSN: 2660-5317

моноди этилацеталь пимелинового альдегидами (I) протекает гладко с образованием хорошими выходами диенового эфироацеталя (III). Гидрирование которых над окисью платины даёт один и тот же продукт эфироацеталь (IV).

Кислый гидролиз этого ацеталя в мягких условиях (раствор в ацетоне 20°С) приводит с высоким выходом к этиловому эфиру, 7—оксогептановой кислоты (V). Конденсация альдегида (V) с пентилидентри-фенил фосфоранам (VI) в условиях «цис - олефинирования» (VII). Последние алюмогидридом лития восстановлен в соответствующие 7—цис додецен—1—ола (VIII) которая с помощью пиридиний хлорхроматом превращена в 7—цис- додеценилацетата (IX).

Изомерная чистота синтезированных соединений, определена в газожидкостной хроматографии, на капиллярной колонке с умеренным полярной фазой (карбовакс, 20м) и на набивной колонке со стероспецифической фазой UF-275, составляет цис- изомера 96-98%.(IX).

OHCCH=CHCH₂CH(OC₂H₅)₂
$$\longrightarrow$$
 H₅C₂OOC(CH=CH)₂CH₂CH(OC₂H₅)₂ \longrightarrow III

$$\frac{H_2/PtO}{IV} \longrightarrow H_5C_2OOC(CH_2)_5CH(OC_2H_5)_2 \xrightarrow{H_3O^+} H_5C_2OOC(CH_2)_5CHO}
\longrightarrow C_4H_9CH=CH(CH_2)_5COOC_2H_5 \longrightarrow VIII$$

$$LiAlH_4 \longrightarrow C_4H_9CH^{\frac{Z}{2}}CH(CH_2)_6OH \longrightarrow VIII$$

$$C_4H_9CH^{\frac{Z}{2}}CH(CH_2)_6OAc \longrightarrow IX$$

Регистрацию масс спектров образцов проводили методом TIC (Total Ion Current) в диапазоне 50-1100 масс условия МС: расход газа осущителья - 4 л/мин температура газа - 320°C, давление газа в распылитель - 20 рsi, температура испарителья - 250°C, напряжения на капилляре - 4500 вт [6-10].

Выход, физико-химические и спектральные характеристика полученных соединений.

№	Соединение	Выхо Т.кип д (мм.рт.с % т)	(мм.рт.с	n_D^{20}	Брутто-формула данные элементного анализа		ИК- спект р (см ⁻¹).	Спектр ПМР, м.д, Мультиплетнос ть количество протонов (б,м,д).
				Найден о %	Вычес- лено %			

1	1,1-Диэтокси – цис- 7- додецен	52	120-123 (2)	1,4422	C ₁₄ H ₂₆ O 2 C 74,94 H 12,58	C 75,21 H 12,74	1100 1120 3010	0,90т (3H,CH ₃) 1,15т (6H,CH ₃) 1,25уш.с (10H,CH ₂) 2,00м (4H,OCH ₂) 4,30м (1H,OCHO), 5,40м (2H, CHCH) 0,90т
2	Цис-7- додецен-1-аль	95	95-97 (2)	1,4520	C ₁₂ H ₂₄ O C 78,61 H 12,74	C 79,06 H 12,86	1720 2710 3000	1,31 уш.с, (3H,CH ₃) 2,5м (10H,CH ₂) 0,90м (4H,CH ₂ CCH ₂) 2,45м (2H,CH ₂ O) 5,45м(2H,CHCH) 9,85т (1H,CHO) 0,85т(3H,CH ₃)
3	Цис-7- додецен-1-ол ацетат	37	94-95 (0,5)	1,4542	C ₁₂ H ₂₂ O C 78,11 H 13,22	C 78,19 H 13,22	1050 3005 3620	1,25уш,с.(12H,CH ₂), 2,05м,(4H,CH ₂ COC H ₂) 3,50т(2H,CH ₂ O), 5,25м (2H,CHCO).

Выводы: Феромоны - химические вещества, выделяемые насекомыми и вызывающие специфические поведенческие и физиологические реакции у воспринимающих насекомых, относящихся к отряду чешуекрылых Lepidoptera, одного компонента совки гамма Autographa gamma цис-7-додеценилацетат синтезировано с помощью реакции Виттига [11-13]. Высокая стереоспецифичность этой реакции получения цис-изомеров, конденсацией моноацеталя пимелинового альдегида с пентаметилтрифенилфосфораном с последующем гидролизом полученного ацеталя в цис-7-додеценаль. Реакция последного с пиридиний хлорхроматом и восстановление вторичного спирта синтезирован цис-7-додеценилацетат, основной компонент полового феромона насекомых совка гамма Autographa gamma.

Список литературы:

- 1. Ковалев Б.Г., Джумакулов Т., Абдувахобов А.А. // Журнал органической химии, 1988. Т.24.вып.10. с.2116-2120.
- 2. Макин С.М., Кругликова Р.Н., Попова Т.П., Чернышев А.М. // Журнал органической химии, 1982, Т.18, вып.5
- 3. Мосидиков М.Ш., Джумакулов Т., Турдибаев Ж.Э. Применение феромона в отряде «Lepidoptera» в целях усовершенствования борьбы с вредителями сельскохозяйственных культур // Сборник научных статей по итогам работы Межвузовского научного конгресса ВЫСШАЯ ШКОЛА: НАУЧНЫЕ ИССЛЕДОВАНИЯ. Том 2. Москва, 2020.c.101-107.

- 4. Джумакулов Т., Турдибаев Ж.Э., Таджиева С.Х. Синтез полового феромона матки медоносной пчелы *Apis mellifera* // Universum: Химия и биология: электрон. научн. журн. 2020. № 2(68).c.34-36.
- 5. Джумакулов Т., Турдибаев Ж.Э., Кушбоев Э.Э. Синтез полового феромона рода Orgyia (Lepidoptera) // Universum: химия и биология: электрон. научн. журн. 2021. 3(81).c.54-58.
- 6. Самадов, А., & Носиров, Н. (2021). СПОСОБ ИЗВЛЕЧЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ (ЗОЛОТО, СЕРЕБРО) ИЗ ХВОСТОВ ЗИФ. *InterConf*.
- 7. Самадов, А., Носиров, Н., & Жалолов, Б. (2021). Изучение минералогический состав хвостов Чадакской зиф. *InterConf*.
- 8. Samadov, A., Nosirov, N., Qosimova, M., Muzafarova, N., & Almalyk, B. (2021). PROCESSING OF LAYOUT TAILS OF GOLD-EXTRACTING FACTORIES. Збірник наукових праць SCIENTIA.
- 9. Носиров, Н. И. (2021). РЕКОМЕНДУЕМАЯ СХЕМА ПЕРЕРАБОТКИ ХВОСТОВ ЧАДАКСКОЙ ЗОЛОТОИЗВЛЕКАТЕЛЬНЫХ ФАБРИК. Scientific progress, 1(6).
- 10. Носиров, Н. И. (2021). Изучение Обогатимости Золотосодержащих Хвостов. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 2(4), 11-16.
- 11. Носиров, Н. И. (2021). ИССЛЕДОВАНИЙ СПОСОБОВ ИЗВЛЕЧЕНИЯ ЗОЛОТА И СЕРЕБРА ИЗ ХВОСТОВ ЗОЛОТОИЗВЛЕКАТЕЛЬНЫХ ФАБРИК. Scientific progress, 1(6)
- 12. Nosirov, N. (2021). TAKING SAMPLES OF STRAIGHT TAILS OF THE TAILS OF THE GOLD EXTRACTION FACTORY. Збірник наукових праць SCIENTIA..
- 13. Носиров, Н. И. (2021). АНАЛИЗ ВЫПОЛНЕНЫХ ИССЛЕДОВАНИЙ СПОСОБОВ ИЗВЛЕЧЕНИЯ ЗОЛОТА И СЕРЕБРА ИЗ ХВОСТОВ ЗОЛОТОИЗВЛЕКАТЕЛЬНЫХ ФАБРИК. Scientific progress, 1(6).