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Abstract: In applied statistics, particularly in domains like economics and insurance, small sample 

sizes and non-ideal data conditions often compromise the accuracy of traditional inferential 

methods. Iraqi insurance sector data from 1999 to 2014 offers only 16 observations, making classical 

regression approaches unsuitable due to their dependence on large sample assumptions. There is 

insufficient understanding of how bootstrapping methods compare in terms of estimation reliability 

under such constrained data conditions. This study aims to assess the effectiveness of bootstrap 

resampling both error-based and observation-based in estimating regression parameters related to 

premium retention rates in the Iraqi insurance industry. Empirical comparisons using mean squared 

error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) reveal that 

the error resampling method significantly outperforms the observation resampling method in 

fitting accuracy. The study further identifies six key predictors of premium retention rate, including 

corporate capital, changes in underwriting, population size, bank credit, bank deposits, and 

education levels (risk aversion). This research uniquely applies bootstrap methods to an 

underexplored dataset within the insurance sector of a developing country, demonstrating how 

inferential robustness can be achieved without reliance on large samples or strict distributional 

assumptions. The findings support the broader adoption of error-based bootstrap techniques in 

policy modeling and financial forecasting, particularly in data-scarce environments common to 

developing economies and urban planning contexts. 

Keywords: bootstrap method, inferential statistics, regression estimation, regional planning, data-

driven planning. 

1. Introduction 

 In the broader context of urban and regional planning, the relevance of the bootstrap 

method becomes even more pronounced. Planners and policymakers frequently face data 

limitations when analyzing spatial patterns, demographic shifts, or infrastructure needs 

[1].  

Datasets in urban planning often include irregularities due to spatial heterogeneity, 

incomplete records, or sociopolitical influences that distort conventional statistical 

assumptions. Here, the bootstrap method empowers analysts to generate credible insights 

from limited or noisy data, improving the quality of evidence-based planning decisions 

[2]. 
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For instance, when evaluating the relationship between urban growth and access to 

public services such as healthcare, education, or transportation—the bootstrap technique 

can help refine regression models used to inform spatial equity assessments and policy 

interventions [3].  

Its capacity to provide robust parameter estimates makes it a valuable asset in 

understanding the complexities of rapidly changing urban environments, especially in 

developing contexts. In this research, the author applies the bootstrap method to estimate 

regression parameters related to the premium retention ratio in Iraqi insurance 

companies. While the specific application is grounded in the insurance sector, the 

methodological implications resonate far beyond. It exemplifies how statistical innovation 

can support sectors critical to urban resilience, such as financial services, risk 

management, and infrastructure development, ultimately reinforcing data-driven 

approaches in urban and regional planning frameworks [4]. 

2. Materials and Methods 

1.1 First Approach: Resampling the Errors 

This method involves estimating the regression parameters for the entire sample and 

then computing the residual errors. Numerous resamples are drawn with replacement 

from these residuals. For each resampled set, the dependent variable is recalculated, and 

the regression parameters are re-estimated. The final parameter estimate is obtained by 

averaging these resampled estimates [5]. 

1.2 Second Approach: Resampling the Observations 

In this approach, multiple resamples are drawn with replacement from the full 

dataset. The regression parameters are then estimated separately for each resampled 

dataset, and the final parameter estimate is determined by averaging the estimates from 

all resamples [6]. 

The researcher will compare these two approaches using goodness-of-fit measures, 

including Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Relative 

Error (MRE) to assess the accuracy and reliability of the estimations [7]. 

2- General Framework of the Study 

2.1 Research Problem 

During constructing a regression model, we usually rely on observations from a 

sample that is often randomly drawn from the study population. To obtain reliable results 

that can be generalized to the statistical population, the sample must be randomly selected 

and representative of the population from which it was drawn. In order for the sample to 

be random and representative, researchers must select an appropriate sample size for any 

statistical analysis. Most researchers have suggested that the sample size should not be less 

than 30 observations [8]. 

When fitting a regression model for the premium retention rate of Iraqi insurance 

companies, it was found that the available data covered the period from 1999 to 2014, 

consisting of only 16 observations. This sample size is clearly insufficient, making it 

necessary to explore an appropriate statistical method to fit the model in such cases. 

Thus, the research problem is: 

3. Results and Discussion 

"The lack of a high-quality regression model in cases where the study includes a small 

number of observations." 

2.2 Research Objectives 

The objectives of this study are as follows: 

To estimate regression parameters by using the bootstrap method. 

To compare the two resampling methods of errors and method of resampling of 

observation, in estimating regression parameters using the bootstrap technique [9]. 

2.3 Research Hypothesis 
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The study aims to test the following hypothesis: 

The error resampling method provides a better fit quality than the observation 

resampling method. 

2.4 Research Significance   

The significance of this study lies in the following points: 

Obtaining a regression model that explains the changes in the premium retention rate 

of Iraqi insurance companies [10]. 

Identifying the most efficient method for estimating regression parameters using the 

bootstrap technique. 

2.5 Study Population 

The study population consists of all insurance companies operating in the Kurdistan 

region of Iraq, including the Saudi Holding Insurance Company, which practicing of 

property insurance for both national and foreign entities, whether they are insurance 

companies or brokerage firms [11]. 

2.6 Study Scope 

1. Temporal Scope: The study will use available data from 1999 to 2014. 

2. Application Scope: The study will focus on estimating the premium retention 

rate in the Iraqi insurance market. 

2.7 Data Sources 

The study relies on published and unpublished statistical data from official sources 

such as the General Statistics Office, annual reports of the Central Bank of Iraq, the Arab 

Monetary Fund, and the Banking Institute, covering the period from 2009 to 2024. 

0 < 𝐵𝑜𝑙𝑠
𝑏 − 𝐵𝑂𝐿𝑆 < −2𝑅(𝐾𝐶) −2𝑅(𝐾𝐶) < 𝐵𝑜𝑙𝑠

(𝑏)
− 𝐵𝑜𝑙𝑠 < 0 𝑅(𝐾𝑆) (1) 

Represent percentage kadilar andcingi 

The LAL represents the bootstrap regression estimator 𝐵𝑜𝑙𝑠
(𝑏)

, and 𝐵𝑜𝑙𝑠represents the 

least-squares regression magnitude. This has the effect of providing more accurate results 

than previous estimators. The mean square error (MSE) criterion was used to test the 

accuracy of the new estimators. The relative efficiency of all proposed estimators was also 

found, and the theoretical aspect was supported with applied and experimental examples 

[12]. 

2.8 Nature of the Bootstrap Model 

The bootstrap method is used to study the relationship between the dependent 

variable and a set of independent variables, particularly in cases of small sample sizes. 

Since the available data covers only, number of observations 16 only. The bootstrap 

method was necessary to derive an equation that explains the variations in the premium 

retention rate of Saudi insurance companies based on independent variables, whether 

insurance-related or economic [13]. 

To define the nature of the bootstrap model, we will present it through the following 

points: 
2.8.1 Advantages of the Bootstrap Method 

The role of computers in statistical inference has grown, with resampling methods 

such as the bootstrap  and jackknife becoming essential. Bootstrap is applied in various 

cases, including linear and nonlinear regression, time series models, multivariate statistical 

analysis, nonparametric regression, confidence interval estimation, and censored data 

analysis [14]. 

The bootstrap method can be used in many situations, including linear and nonlinear 

regression applications, time series models, multivariate statistical analysis, 

nonparametric regression, confidence interval estimation, and truncated data analysis [15]. 

The researcher resorted to using this proposed method for the following reasons . 

The bootstrap method is used to estimate regression coefficients, especially if the 

condition of a normal distribution is not met in the data used. 

The bootstrap method can be used in both parametric and nonparametric cases [16]. 
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The bootstrap method provides more accurate estimates of error variance than those 

obtained from other traditional methods. 

The bootstrap method was developed to overcome the problem of the lack of an 

assumption of independence of observations, which leads to a lack of analytical accuracy 

[16]. 

The final bootstrap estimate distribution is normal, even if the original distribution 

under study is not. Because it does not require distribution-specific assumptions (such as 

that errors follow a normal distribution), the bootstrap method can yield more accurate 

inferences when the data are poorly representative or when the sample size is small. 

Bootstrapping can be applied to statistics with sampling distributions that are difficult 

to derive, even approximately. It is relatively easy to apply bootstrapping to samples other 

than simple random samples (such as stratified and cluster samples). 

2.8.2 Estimating a Regression Model Using Bootstrapping 

There are two methods for estimating a regression model using bootstrapping, and 

the details of these methods are as follows: 

The first method: Bootstrap Based on the Resampling Observations 

The resampling process involves treating the x's as random variables rather than fixed 

ones. Suppose the vector 𝑊𝑖 = (𝑌𝑖 , 𝑋𝑗𝑖)of degree (1k+1x1) refers to the values of the 𝑖𝑡ℎ 

observation. In this case, the set of observations is the vectors W_1, W_2, W_n. The 

bootstrap method based on the resampling of observations is as follows: 

1-Draw bootstrap samples with (𝑊1
𝑏 , 𝑊2

𝑏 … . . , 𝑊𝑛
𝑏) with replacement from 

observations with probability 1/n 

For each, w, we will denote the elements of each vector by the symbol 𝑊𝑖
𝑏 = (𝑦𝑖

𝑏 , 𝑥𝑗𝑖
𝑏 , 

where k j=1,2,..n j=1,2,. (2) 

From this formula, the vector 𝑌𝑖
𝑏 = (𝑦1

𝑏 , 𝑦2
𝑏 , … … . , 𝑦𝑛

𝑏), and the matrix 𝑋𝑗𝑖
𝑏 =

𝑋𝑗1
𝑏 , 𝑋𝑗2

𝑏 , … … 𝑋𝑗𝑛
𝑏  

2- Calculate the regression coefficients using the OLS method from the booster sample 

�̂�(𝑏1) =((𝑋(𝑏)′𝑋(𝑏))−1𝑋(𝑏)′𝑌(𝑏) (3) 

3-Repeat steps 1 and 2 for each r=1,2, 

Where B is the number of booster samples 

4-We obtain the probability distribution (𝐹(�̂�(𝑏))for the bootstrap estimates 

�̂�(𝑏1), �̂�(𝑏2), … … , �̂�(𝑏𝐵)and from this distribution we obtain the regression coefficient 

estimates as follows: 

The bootstrap estimate of the regression coefficient is the mean of the distribution (F(B 

̂^(b), i.e.: 

 �̂�(𝑏) = ∑𝐵
𝑟=1 �̂�(𝑏𝑟)/𝐵 =  𝐵 ̂(𝑏𝑟) (4) 

5 -Therefore, the regression equation for the bootstrap is Y ̂=XB ̂^(b)+ε, where B ̂^(b) is 

an unbiased estimator 

For the second method: the resampling-based bootstrap For errors 

Bootstrap Based On The Resampling Errors 

The resampling process involves treating x's as constants. The bootstrap method 

based on resampling errors is as follows: 

1 -Fit a least-squares regression equation from the total sample. 

2-Calculate the error values, 𝑒𝑖 = 𝑦𝑖 + �̂�𝑖  

3-Draw bootstrap samples of size n with substitution (𝑒1
(𝑏)

, 𝑒2
(𝑏)

, … … 𝑒𝑛
(𝑏)

) 

from the e_i values calculated in step 2, with probability 1/n for each e_i value.. 

4-Calculate the bootstrap values of Y by adding the residuals resulting from 

resampling in step 3 to the equation estimated in step 1, assuming a constant regression 

relationship: 𝑌(𝑏) = 𝑋�̂� + 𝑒(𝑏) 

5 -Obtain the bootstrap parameter estimates using the least squares method from the 

first bootstrap sample: Thus, �̂�(𝑏1) = (𝑋′𝑋)−1𝑋′𝑌(𝑏) (5) 

6- Repeat steps 3, 4, and 5 for each B,..r=1, 2, 
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Finally, repeat steps 4 and 5 as in the case of resampling observations. Note the 

following about the resampling error method: 

1-When x's are constant, the bootstrap method achieves similarity between the 

estimated values of Y ̂ in the sample and the conditional expectation Y in the population, 

and between the residuals E in the sample and the error ε in the population. 

2-Although there are no assumptions regarding the shape of the error distribution, 

the bootstrap procedure, by constructing Y^(b) according to the linear model, assumes that 

the model's basic shape is correct. 

3-In addition, by resampling the residuals and then randomly adding them to the 

estimated values, this assumes that the errors are identically distributed. For example, if 

the true errors have non-constant variance, this will not be reflected in the resampling of 

the residuals. Similarly, the effect of outliers will be eliminated as a result of the resampling 

process.  

2.8.3 Bootstrap estimates of bias, variance, and confidence interval for parameters 

are as follows: 

Bootstrap bias is equal to 𝑏𝑖�̂�𝑠𝑏 = �̂�(𝑏) − 𝐵 (6) 

-Bootstrap variance from the distribution ((F(B ̂^(b) is calculated as follows (Liu, 1988; 

Stine 1990) 

𝑉𝑎𝑟(�̂�(𝑏)) = ∑𝐵
𝑟=1 [(�̂�(𝑏𝑟) − �̂�(𝑏))(�̂�(𝑏𝑟) − �̂�(𝑏))′]l(B-1)   r=1,2,…..,B  ) (7) 

- Bootstrap confidence interval is as follows: 

�̂�(𝑏) − 𝑡
𝑛−𝑝,

𝑎
2

∗ 𝑆𝑒(�̂�(𝑏)) < 𝐵 < �̂�(𝑏) + 𝑡
𝑛−𝑝,

𝑎
2

∗ 𝑆𝑒(�̂�(𝑏)) 

2.8.4 Determining the goodness of fit of the estimated model will be done through 

the following metrics:  

1- Medium Squared Errors 

𝑀𝑆𝐸 = ∑𝑛
𝑖=1 −−−−−−−−−− 𝑛 𝑒𝑖

2 (8) 

2- Medium Absolute Errors 

𝑀𝐴𝑆 = ∑𝑛
𝑖=1 −−−−−−−−−−−− 𝑛 |𝑒𝑖| (9) 

3-Relative Mean Absolute Errors 

100𝑀𝐴𝑝𝐸 = ∑𝑛
𝑖=1 −−−−−−−−−−−− 𝑛 |

𝑒

𝑦
| = (10) 

2.9 Practical Application of the Bootstrap Model 

Here, the practical application of the proposed model will be conducted. Using this 

model, the validity or falsity of the main hypothesis of the research can be proven, which 

states, "The error resampling method has a higher accuracy of reconciliation than the 

observation resampling method." 

The most important economic and insurance variables that explain the premium 

retention rate of Saudi insurance companies are: 

1-Dependent variable: Premium retention rate, symbolized by Y. 

2- Independent variables, which include the following: 

X1: Loss ratio 

X2: Insurance density 

X3: Corporate capital 

X4: Bank credit 

X5: Line avoidance 

X6: Population size * 

X7: Change in underwriting. 

X8: Bank deposits 

X9: Number of learners (risk aversion) 

To test the validity of the study hypothesis, the researcher will use the Efron method 

to analyze a bootstrap regression model using the statistical program Mathcad. This 

method is based on the concept of sampling with a very large number of samples, with the 

number of samples surveyed with a return of 1,000. The steps for applying the bootstrap 

regression model are as follows: 
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First: Data examination 

The actual determination of any statistical model is done through analyzing actual 

historical data using statistical steps that begin with processing the data to make it 

consistent or homogeneous, whether by taking the square root, logarithm, or some 

algebraic operations for both the independent and dependent variables. By examining the 

data, we found its inconsistency. Therefore, the following calculations were performed: 

The independent variables (bank credit, risk aversion) were divided by 1000. 

The bank deposit variable was divided by 10,000. 

Second: Identifying the variables that most influence the premium retention rate. 

Statistically, the data were analyzed using stepwise regression analysis. It became 

clear that the variables that most influence the premium retention rate are: 

X_1 Corporate Capital 

X_2 Change in Subscription 

X_3 Population 

X_4 Bank Credit 

X_5 Bank Deposits 

X_6 Number of Educated Persons (Risk Aversion) 

The regression equation is as follows: 

�̂� = 30987 + 9.196𝑥1 + 0.099𝑥2 + 0.686𝑥3 − 0.098𝑥4 + 0.188𝑥5 + 0.147𝑥6 (11) 

Sig.   .000      .002            .004            . 034            .  000          .  021           . 000 

𝑅2 = 0.997         ,     𝐷. 𝑊 = 2.941      , 𝑛 = 16 
The relationship is explained as follows: 

- There is a direct relationship between the premium retention rate and corporate 

capital. The greater the company's capital, the greater its ability to cope with risk, leading 

to a higher retention limit. 

There is a direct relationship between the premium retention rate and changes in 

underwriting. Increased underwriting increases the premium retention rate, which in turn 

increases the premium retention rate. 

There is a direct relationship between the premium retention rate and population size. 

As the population increases, the underwriting volume for risks increases, which in turn 

increases premiums, thus increasing the premium retention rate. 

There is an inverse relationship between the premium retention rate and bank credit. 

Increased borrowing reduces the amounts deposited with banks, which reduces the 

demand for insurance and, consequently, the premium retention rate. 

There is a direct relationship between the premium retention rate and bank deposits. 

Increased bank deposits lead to increased demand for insurance against the risks of theft 

and breach of trust, which, in turn, increases the premium volume and increases the 

premium retention rate. There is a direct relationship between premium retention rates 

and risk aversion. As the number of educated people increases, insurance awareness and 

demand for insurance increase, which in turn increases insurance underwriting and, 

consequently, premium retention rates. 

It is worth noting that none of the regression problems were studied, given that the 

bootstrap method is very useful as an alternative to parametric estimations  when there is 

doubt about the validity of some hypotheses. 

Third: Estimating the parameters of the bootstrap regression model using the 

resampling method. 

We obtained the following model: 

�̂� = 68.458 − 2.344𝑥1 − 0.05𝑥2 − 0.286𝑥3 − 0.023𝑥4 + 0.033𝑥5 + 0.083𝑥6 (12) 

The model shows that the signs of the model's coefficients differ from those of the 

model estimated from the total sample, which provides an illogical interpretation of the 

relationship between the premium retention rate and the explanatory variables in the 

equation [17]. 

Egyptian Statistical Journal, Volume 60, December 2016 Issue 
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Fourth, estimating the parameters of the bootstrap regression model by following the 

error re-sampling method, we obtained the following model: 
𝑦 =̂ 30.962 + 9.212𝑥1 + 0.099𝑥2 + 0.687𝑥3 + 0.098𝑥4 + 0.188𝑥5 + 0.147𝑥6 

The model shows that the model's coefficients agree with the coefficients of the model 

estimated from the total sample [18]. 

Fifth: Comparison between the observational resampling model and the error 

resampling model. 

The following measures were calculated for each model: 

1- Medium squared errors 

𝑀𝑆𝐸 = ∑𝑛
𝑖=1 −−−−−−−−−−− 𝑛 𝑒𝑖

2 (13) 

 

2-Absolute average errors 

𝑀𝐴𝐸 = ∑𝑛
𝑖=1 −−−−−−−−−−− 𝑛 |𝑒𝑖| (14) 

3- Relative average of absolute errors 

𝑀𝐴𝑃𝐸 = ∑𝑛
𝑖=1 −−−−−−−−−−−−−−− 𝑛 |

𝑒𝑖

𝑌𝑖
|  ∗ 100 (15) 

The following table illustrates this: 

The table illustrates that the error-based bootstrap model significantly outperforms 

the observation-based model in regression estimation accuracy, showing markedly lower 

values across all metrics MSE (0.14627 vs. 52.014), MAE (0.352 vs. 6.158), and MAPE (0.577 

vs. 9.861) indicating superior model fit and predictive reliability (Table 1). 

Table (1). Measures of the accuracy of the fit for the re-sampling model for observations 

and the re-sampling model for errors 

MAPE MAE MSE  

9.861 6.158 52.014 Re-sampling model for 

observation  

0.577 0.352 0.14627 Re-sampling model for errors 

 

The previous table shows that the error resampling model has a higher fitting 

accuracy than the observation resampling model across all three metrics. The values of the 

three metrics for the error resampling model are lower than those for the observation 

resampling model. 

4. Conclusion 

Resampling the residuals and then randomly adding them to the estimated values 

assumes that the errors are identically distributed. For example, if the true errors have non-

constant variance, this will not be reflected in the resampling of the residuals. Similarly, 

the effect of outliers will be diminished by the resampling process. 

-It was found that the variables that most influence the premium retention rate are: 

x1 Corporate capital 

x2 Change in subscription 

x3 Population 

x4 Bank credit 

x5 Bank deposits 

x6 Number of educated people (risk aversion) 

3- Using the resampling method for observations, the model revealed that the signs 

of the model's coefficients differed from the signs of the coefficients for the model 

estimated from the total sample, which provides an illogical interpretation of the 

relationship between the premium retention rate and the explanatory variables in the 

equation. 

4- Using the resampling method for errors, the model revealed that the signs of the 

model's coefficients agreed with the signs of the coefficients for the model estimated from 
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the total sample, which provides a logical interpretation of the relationship between the 

premium retention rate and the explanatory variables in the equation. 

5- It was found that the resampling model for errors had a higher accuracy of fit than 

the resampling model for observations. 6-2 Recommendations 

1. Adopt the bootstrap method to estimate regression model parameters in cases of 

small sample size or presence of... 

2. Try using another model that combines the bootstrap method, especially in cases of 

contamination or noise in the data. 

3. It is preferable to use the resampling method to estimate regression model parameters. 
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