

Volume: 02 Issue: 06 | June 2021 ISSN: 2660-5317

РЕЗУЛЬТАТЫ АНАЛИЗА ЭФФЕКТИВНОСТИ КИСЛОТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА НА ПОИСКОВЫХ И РАЗВЕДОЧНЫХ СКВАЖИНАХ ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ КИРККУЛОЧ

Агзамова С. А.

Институт геологии и разведки нефтяных и газовых месторождений АО «ИГИРНИГМ»

Received 11th April 2021, Accepted 13th May 2021, Online 13th June 2021

Ввеление

В настоящее время в АО «ИГИРНИГМ» проводятся исследования по интерпретации и анализа материалов сейсмических и геофизических исследований структур выведенных из фонда перспективных на нефть и газ структур, а также установления причин получения в них отрицательных результатов. При решении этой задачи особо актуальным является выявление причин несоответствия материалов геофизических исследований поисковых и разведочных скважин с результатами их испытания. Рассмотрим некоторые причины данного расхождения в материалах ГИС и испытания поисковых и разведочных скважин газоконденсатного месторождения Кирккулоч.

Необходимость проведения этих исследований подтверждается результатами работ У.К. Абдазимова, Р.Р. Юсупова, Ф.Э. Меглиева, П.М. Усманова, О.Г. Хайитова, Н.Н. Махмудова и других специалистов /1-9/. По результатам этих исследований на территории Бухаро-Хивинского региона ряд площадей отнесенных в фонд бесперспективных структур были возвращены для проведения дополнительных геологоразведочных работ и получены промышленные притоки углеводородов из ликвидированных поисковых и разведочных скважин. Также необходимо отметить, что с появлением новых технологий интенсификации притоков углеводородов растет возможность получения промышленных дебитов нефти и газа из ранее ликвидированных поисковых и разведочных скважин с отрицательными результатами испытания [1-6].

Материалы и методы

Структура Кирккулоч была выявлена в 1991 г. и подготовлена к глубокому поисковому бурению в 1993 г. сейсморазведочными работами МОГТ 2Д. В 1995 г. начато бурение поисковой скважины № 1, при опробовании которой 1997 г. получены промышленные притоки газа из карбонатных отложений верхней юры. В том же 1997 г. структура введена в разряд месторождений. Всего за период 1995-2020 гг. на площади Кирккулоч пробурены 4 скважины. Из них 3 поисковые (№№ 1, 2, 3) и одна (№ 4) разведочная /10/. Конструкции этих скважин приведены в табл. 1.

Вскрытый разрез на месторождении Кирккулоч представлен породами юрского, мелового, палеогенового неогенового и четвертичного возрастов (табл. 2).

В тектоническом отношении площадь Кирккулоч расположена в южной части Бешкентского прогиба Чарджоуской ступени БХР [7-11].

По кровле карбонатных отложений юрского возраста структура Кирккулоч представляет собой двухкупольную брахиантиклинальную складку широтного простирания. Восточный купол осложнен разломом юго-восточного простирания, угол падения 80^{0} , максимальная амплитуда опущения составляет 70 м. Западный и Восточный купола разделены синклинальным прогибом амплитудой 20 м. Размеры структуры по изогипсе "-3566 м" составляют: длина 5,75 км; ширина 2,2 км; высота 46 м (рис. 1).

Тип залежи – пластово-сводовый, тектонический экранированный. Газоводяной контакт принят на абсолютной отметке "-3566 м". Эффективная газонасыщенная толщина составляет 9,0 м. Коэффициенты открытой пористости и газонасыщенности составляют, соответственно 9 и 78,7 %. Начальное пластовое давление 56,6 МПа. Пластовая температура составляет $128\,^{0}$ C /10/.

Таблица 1 Конструкции поисковых и разведочных скважин месторождения Кирккулоч

таолица т конструкции поисковых и разведочных скважин месторождения кирккулоч									
Параметры	Поисковая	Поисковая	Поисковая скважина	Разведочная					
	скважина № 1	скважина № 2	№ 3	скважина № 4					
Начало бурения	25.04.1995 г.	29.05.1998 г.	26.07.2009 г.	03.06.2016 г.					
Конец бурения	30.12.1995 г.	29.05.2000 г.	03.06.2012 г.	25.06.2017 г.					
Альтитуда, м	320,5	315,2	317,2	316,1					
Удлиненное	426мм х 117 м,	426 мм х 160 м,	426 мм х 47 м,	426 мм х 46 м,					
направление	ВПЦ до устья	ВПЦ до устья	ВПЦ до устья	ВПЦ до устья					
Кондуктор	299 мм х 970 м,	299 мм х 1266 м,	324 мм х 757 м,	324 мм х 766 м,					
	ВПЦ до устья	ВПЦ до устья	ВПЦ до устья	ВПЦ до устья					
Техническая колонна	219 мм х 3155 м, ВПЦ до устья	219 мм х 2775 м, ВПЦ до устья	245 мм х 2800 м, ВПЦ до устья 194 мм х 2726-3772 м, ВПЦ 2726 м от устья	245 мм х 2824 м, ВПЦ до устья 193,7 мм х 2753-3785 м, ВПЦ 2753 м от устья					
Эксплуатационн ая колонна	140 мм х 3975 м, ВПЦ 2877 м от устья	140 мм х 3936 м, ВПЦ до устья	127/139,7 мм х 3804 м, ВПЦ 2500 м от устья	140/127 мм х 3836 м, ВПЦ 2235 м от устья					

Таблица 2 Геологический разрез месторождения Кирккулоч вскрытый поисковыми скважинами

V								
Показатели	Поисковая	Поисковая	Поисковая	Разведочная				
Показатели	скважина № 1	скважина № 2	скважина № 3	скважина № 4				
Неоген-четвертичные	0-570	0-615	0-636	0-632				
отложения, м	0-370	0-013	0-030	0-032				
Палеогеновые	570-724	615-720	636-760	632-749				
отложения, м	370-724	013-720	030-700	032-749				
Меловые отложения, м	724-2794	720-2767	760-2819	749-2813				
в.т.ч. сенон	724-1209	720-1205	760-1236	749-1230				
турон	1209-1596	1205-1609	1236-1688	1230-1682				
сеноман	1596-1998	1609-1990	1688-1936	1682-1930				
альб	1998-2240	1990-2218	1936-2263	1930-2257				

неоком-апт	2240-2793	2218-2767	2263-2819	2257-2813
Юрские отложения, м	2793-3774	2767-4010	2819-3972	2813-3980
в.т.ч. Титонский ярус	2794-3774	2767-3822	2819-3807	2813-3787
в.т.ч. верхние ангидриты	2794-2802	2767-2780	2819-3829	2813-2824
верхние соли	2802-3280	2780-3337	3829-3307	2824-3420
средние ангидриты	3280-3534	3337-3470	3307-3454	3420-3590
нижние соли	3534-3689	3470-3694	3354-3742	3590-3612
нижние ангидриты	3689-3774	3694-3823	3742-3807	3612-3787
Келловейоксфорд	3774-4041	3823-4010	3807-3972 (в. ч)	3787-3890
XV горизонт	3774-3897	3823-3862	3807-3876	3787-3840
XVa горизонт	3897-3939	3862-3953	3876-3906	3840-3936
XVI горизонт	3939-4041	3953-4010	3906-3972	3936-3980
Терригенная юра, м	4041-4055	-	-	-

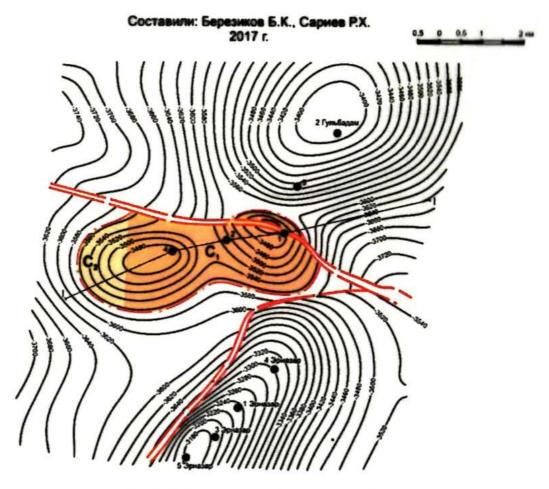


Рис.1. Структурная карта месторождения Кирккулоч по кровле карбонатных отложений

Volume: 02 Issue: 06 | June 2021, ISSN: 2660-5317

Промышленная газоносность месторождения Кирккулоч установлена в карбонатных отложениях XV горизонта верхнеюрского возраста (рис. 2).

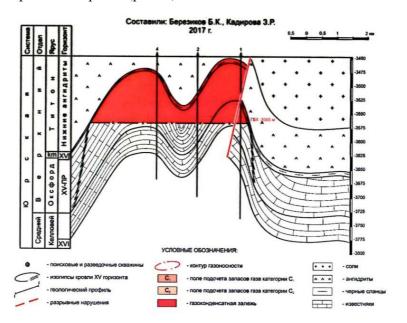


Рис. 2. Геологический профиль месторождения Кирккулоч

Газы верхнеюрских отложений относятся к категории сухих, низкосернистых, углекислых, низкоазотных. Плотность газа равна $0,617 \text{ г/см}^3$. Молярная доля компонентов в газе составляют (%): метана 67,65; этана 5,21; пропана 1,17; изо-бутана 0,24; H-бутана 0,20; пентана и высшие 0,79; серы 0,002; азота 1,77; углекислого газа 2,91.

Конденсаты относятся к категории тяжелых, сернистых. Потенциальное содержание конденсата в газе составляет 36,7 г/см³.

В поисковой скважине № 1 испытаны 4 интервала выделенных по материалам интерпретации ГИС как газонасыщенные. Нижные три интервала испытания вскрыты зарядами ПКО-89 по 12 отвесствий на 1 м.

Из интервала 3940-3930 м (XVI горизонт) притока углеводородов не получено. Данный интервал представлен двумя пропластками с коэффициентами газонасыщенности до 43,8 % и пористости 5,4-6,1 %.

Из интервала 3913-3903 (XVI горизонт) притока углеводородов также не получено. В данном интервале имеется всего один пропласток с коэффициентами газонасыщенности 61,4 % и пористости 6,1 %.

Из интервала 3873-3860 м (XVa горизонт) притока газа не получено. Данный интервал представлен двумя пропластками с коэффициентами газонасыщенности 79-94 % и пористости 4,1-6,6 %.

Интервал 3841-3823 м (XV горизонт) вскрыт гидропескоструйной перфорацией. Получен приток газа с дебитом 148 тыс.м³/сут при штуцере диаметром 10 мм и 186 тыс.м³/сут при штуцере

Volume: 02 Issue: 06 | June 2021, ISSN: 2660-5317

диаметром 20 мм. В данном интервале по ГИС выделено 6 пропластков с коэффициентами газонасыщенности 57,4-91,6 % и пористости 4,7-7,5 %.

В процессе испытания поисковой скважины № 1 было установлено смятие эксплуатационной колонны на глубине 3095 м (интервал верхних текучих солей), которое классифицировано как непредвиденное осложнение, вызванное причинами геологического характера. В результате скважина была ликвидировано по категории V пункту «Д». После установления цементного моста в интервале 2961-2853 м было произведено торпедирование и поднято 1358 м эксплуатационной колонны [12-19].

В скважине с 05.02.2020 г. по 04.10.2020 г. был проведен капитальный ремонт по возврату его из ликвидации. После восстановления ствола скважины до глубины 3095 м был спущена эксплуатационная колонна диаметром 139,7 мм. Были спущены НКТ и осуществленааэризация скважины, однако притока газа не получено. Проведена обработка с закачкой 20 м³ 15 % ной концентрации соляной кислоты. После аэризации получен слабый приток газа [20-24].

С целю интенсификации притока газа 01.10.2020 г. в скважине был проведен кислотный гидравлический разрыв пласта (КГРП) по технологии компании «Такrom». Было закачено $56 \text{ м}^3 20$ % ной концентрации соляной кислоты с максимальным давлением 55,3 МПа. После аэризации получен приток газа с дебитом 87 тыс.m^3 /сутна штуцере диаметром 12 мм. Скважина введена в эксплуатацию 03.10.2020 г., а по состоянию на 01.03.2021 г. работает с дебитом газа 90 тыс.m^3 /сут и конденсата 2, 3 т/сут.

Интервал проведения КГРП по ГИС характеризуется следующими параметрами: количество газонасыщенных пропластков - 16; общая газонасыщенная толщина - 23,9 м; коэффициент газонасыщенностии— 52,8-91,6 %; коэффициент пористости - 4,1-11,1 %; коэффициент глинистости - 0,53-18,1 %.

В поисковой скважине № 2 испытано 3 интервала.

Интервал 3884-3880 м (XVa горизонт) перфорирован зарядами УД-89 по 18 отверстий на 1 м. После перехода с глинистого раствора на воду и аэризации притока из пласта не получено. Данный интервал по ГИС состоит из двух прорластков с толщиной всего 2 м, с коэффициентами газонасыщенности 59-66 % и пористости 6-9 %.

Интервал 3866-3860 м и 3853-3847 м (XVa горизонт), также перфорирован зарядами УД-89 по 12 отверстий на 1 м. После аэризации получен слабый газ не поддающийся замеру. Была проведена обработка с закачкой 6 м³ 15 % -ного раствора соляной кислоты. В результате получен приток газа с дебитом 5 тыс.м³/сут. В процессе испытания в забое осталось 43 метра НКТ диаметром 73 мм. По ГИС в данном интервале выделяются 7 пропластков общей толщиной 7,6 м, с коэффициентами газонасыщенности 53-74 % и пористости 6-13 %.

Интервал 3838-3832 м и 3823-3820 м (XV горизонт) перфорирован зарядами ОВЕН-86 по 20 отверстий на 1 м. После аэризации из пласта приток газа не получен. По ГИС в данном интервале выделяются 4 пропластка общей толщиной 3,2 м, с коэффициентами газонасыщенности 69-78 % и пористости 5-7%.

Поисковая скважина № 2 ликвидирована по категории Іпункту "а".

Volume: 02 Issue: 06 | June 2021, ISSN: 2660-5317

В поисковой скважине № 3 испытание в открытом стволе проведен в интервале 3807-3884 м (XV горизонт) методом аэризации. После освоения из пласта приток газа не получен [25]. По ГИС данный интервал имеет толщину всего 2,8 м, с коэффициентами газонасыщенности 62,1-76,1 % и пористости 4-6 %.

Поисковая скважина № 3 ликвидирована по 1-ой категории пункту "е".

В разведочной скважине № 4 по материалам интерпретации ГИС испытано 4 интервала.

Интервал 3980-3836 м (XV горизонт) испытан в открытом стволе. В результате получен слабый газ неподдающийся замеру с пластовой водой. Хотя по ГИС в данном интервале выделяются 6 пропластков общей толщиной 14 м, с коэффициентами газонасыщенности 30-53,6 % и пористости 3,2-8,1 %.

Интервал 3895-3836 м (XV горизонт) также испытан в открытом стволе. В результате получен слабый приток газа не поддающийся замеру с пластовой водой. По маетриалам ГИС данный интервал характеризуется как предедущий [29].

Интервал 3846-3836 м (XV горизонт) испытан в открытом стволе. В результате получен слабый приток газа неподдающийся замеру с пластовой водой. По ГИС в данном интервале выделяется 2 пропластка общей толщиной 3,2 м, с коэффициентами газонасыщенности 30-44,1 % и пористости 3,3-3,8 %.

В последнем объекте через эксплуатационную колонну были испытаны интервалы 3825-3821 м, 3811-3803 м, 3800-3792 м, 3807-3792 м и 3789-3787 м. В результате испытания получен приток газа с дебитом 29,75 тыс.м³/сут через штуцер диаметром 9мм. По ГИС в данном интервале выделяются два пропластка общей толщиной 3,4 м, с коэффициентами газонасыщенности 32,6-81,2% и пористости 2,2-6,1%.

Разведочная скважина № 4 ликвидирована по II-ой категории пункту "a".

В разведочной скважине с 01.06.2020 г. по 05.09.2020 г. был проведен капитальный ремонт. После восстановления ствола скважины спущены НКТ с фильтром (3822-3782 м) до глубины 3822 м. Проведено КГРП, закачено 40 м^3 соляной кислоты 19 % -ой концентрации с максимальным давлением 43,7 МПа. В результате получен приток газа с дебитом $120 \text{ тыс.м}^3/\text{сут}$ через штуцер диаметром 9 мм. По состоянию на 01.03.2021 г. разведочная скважина $\cancel{N} 2$ работает с дебитом $124 \text{ тыс.м}^3/\text{сут}$.

Характеристики интервалов по ГИС и результаты испытания скважин сведены в табл. 3.

Таблица 3 Результаты испытания поисковых и разведочных скважин месторождения Кирккулоч

	кирккулоч										
	Инте		Эффективн			Коз	эффициен				
Nº	рвал	Горизо	ая		эффициен		Т	Коэффициенты, доли ед.		Дебит , газа, тыс.м ³ /сут	
- '	испытания,	НТ	газонасыще	т пори	стости,	газонасы	щенности				
П	M		нная		%		,				
			толщина, м				%		1		
				инималь	аксималь	инималь	аксималь	песчанист	расчлененн	без	посл
				ная	ная	ная	ная	ости	ости	ОПЗ	е
	-										0П3
	Поисковая										
4	скважина	177.77	0.7	F 4	<i>c</i> 1	160	40.0	0.07			
		XVI		5,4	6,1		43,8	0,27	2	«cyxo	-
		XVI		6,1	6,1	61,4	61,4	0,87	1	»	-
3		XVa		4,1	6,6	79	94	0,23	2	«cyxo	-
4		ΧV	7,5	4,7	7,5	57,4	91,6	0,42	6	»	-
	3841-3823									слабы	
	Ликвидиро									й газ	
	вано									186	
	20.06.1997										
	г. Поисковая									#017110	
										«cyxo	- 5,0
_	скважина № 2	XVa	2.0	6,0	9,0	59	66	0,50	2	»	
		xva XVa		6,0 6,0	13,0	53	74	0,50		слабы й газ	CNU
7		xva XVa	7,0	0,0	13,0	33	74	0,40	/	и газ Прит	J
8		xva XV	3,2	5,0	7,0	69	78	0,18	4	-	-
		xv XV	3,2	3,0	7,0	09	70	0,10		ок не получ	
	3823-3820	ΛV								получ ен	
	Ликвидиро									СП	
	вано										
	24.08.2001										
	Γ.										
	Поисковая										
	скважина										
10		ΧV	2,8	4,1	6,0	62,1	76,1	не	не	Прит	Слаб
	3804-3884		_,-	-,-	-,-	-,-	,_			-	ый
	(открыты							Partie	Partie	получ	
	й ствол)									ен	
	иквидирова										
	но										
	20.06.2012										
	Γ.										
	Разведочн										
	ая										
		ΧV	14	3,2	8,1	30	53,6	0,10		слабы	-
	Nº 4									й газ	
12	3980-3836	ΧV	14	3,2	8,1	30	53,6	0,10	6		-
	(открыты									слабы	
13		ΧV	4,2	3,3	3,8	30	44,1	0,42	2	й газ	-
	3895-3836								_		
14	(открыты	ΧV	3,4	2,2	6,1	32,6	81,2	0,09		слабы	-
	й ствол)									й газ	
16	3846-3836										
17	(открыты									29,75	

й ствол)					
3825-3821					
3811-3803					
3800-3792					
3807-3792					
3789-3787					
иквидирова					
но					
30.09.2017					
Γ.					

Таким образом методический подход основанный на сопоставлении материалов ГИС и результатами испытания позволяетвыявить причины отсутствия притоков из газонасыщенных интервалов и наметить пути повышения эффективности освоения поисковых и разведочных скважин.

Обсуждение результатов исследований

В результате проведенного анализа испытания поисковых и разведочных скважин месторождения Кирккулоч можно сделать следующие выводы:

- интервалы испытания представлены депрессионной фацией характеризующихся высокой геологической неоднородностью и низким фильтрационно-емкостными свойствами пород коллекторов;
- ▶ большой срок бурения поисковых и разведочных скважин с продолжительностью вскрытия газонасыщенных горизонтов 48-67 суток и репрессией до 15 % от начального пластового давления негативно сказываются на результатах испытания, а в некоторых случаях может быть основной причиной отсутствия притока из-за глубокой кольматации глинистого раствора в пласт:
- ➤ отсутствие притоков из интервалов выделенных по ГИС как газонасыщенные с достаточной пористостью может быть связано также с использованием мало эффективных перфораторов и не использованием современных методов интенсификации притока;
- **р** процесс испытания может быть осложнен геологическими (смятие эксплуатационной колонны) и технологическими (обрыв НКТ, перфоратора) причинами.

Рекомендации

В целях повышения эффективности освоения месторождения Кирккулоч рекомендуется:

- ▶ бурение двух первоочередных разведочных скважин с целью уточнения геологического строения месторождения и извлечения запасов углеводородов. Место расположения рекомендуемых разведочных скважин показано на рис. 3;
- ▶ восстановление из ликвидации поисковые скважины №№ 2, 3;
- испытание всех интервалов должно быт осуществлено с проведением эффективных технологий интенсификации притока газа, в том числе КГРП являющийся в настоящее время основным методом освоения низкопроницаемых коллекторов.

Литература

1. Абдуазимов У., Хадиев М.В., Ниязмуратов Ж.К. Повышение эффективности вызова притока нефти и газа из сложных коллекторов пластового типа в Бешкентском прогибе //Узбекский журнал нефти и газа. –Ташкент, 2009. -№ 4. –С. 26-28.

Volume: 02 Issue: 06 | June 2021, ISSN: 2660-5317

- 2. Юсупов Р.Р., Ходжиметов А.И., Турсунова Т.М., Тожибоев И.Ю. Деформационные свойства пород карбонатной формации Бешкентского прогиба (на примере месторождений Чунагар и Янги Каратепе) //Узбекский журнал нефти и газа. –Ташкент, 2008. -№ 8. –С. 9-11.
- 3. Эрматов Н.Х., Мухаммадиев Х.М., Агзамов А.А. О возможности оценки степени очищения призабойной зоны пласта по данным гидродинамических исследований скважин //"Инновационное развитие нефтегеологической науки Узбекистана и роль молодежи в решении ее проблем" (Акрамжоджаевские чтения). Материалы VI научно-практической молодежной конференции. –Ташкент, 2018. –С. 114-117.
- 4. Хайитов О.Г., Закиров А.А., Асадова Х.Б. Исследование состояния призабойной зоны скважин месторождения Шакарбулак //Вестник ТашГТУ. –Ташкент, 2004. -№ 2. –С. 105-110.
- 5. Агзамов А.А., Хайитов О.Г. Оценка снижения проницаемости трещиноватого коллектора в процессе разработки месторождения //Известия вузов. Горный Журнал. –Екатеринбург, 2010. -№ 3. –С. 31-32.
- 6. Влияние гидродинамического несовершенства на производительность скважин /Б.Ш. Акрамов, О.Г. Хайитов, Ж.Ф. Нуритдинов и др. //GLOBUS. –Санкт-Петербург, 2020. –С. 25-28.
- 7. Махмудов Н.Н., Агзамов А.А., Мухаммадиев Х.М. Анализ факторов, влияющих на результаты вскрытия и освоения скважин в подгазовых нефтяных залежах //"Фундаментальные и прикладные проблемы науки". Материалы XIII Международного симпозиума. –Москва, 2018. –С. 172-179.
- 8. Махмудов Н.Н., Агзамов А.А., Камалов Б.С., Севаров У. Устойчивость пород коллекторов нефти и газа //Инновационтехнологияларжурнали. –Карши. 2014. -№ 4. –С. 3-6.
- 9. Меглиев Ф.Э., Гулямова А.К. Выделение и освоение сложнопостроенных коллеторов в карбонатных породах Бешкентского прогиба // Узбекский журнал нефти и газа. –Ташкент, 2003. -№ 2. –С. 13-16.
- 10. Абдуллаев Г.С., Богданов А.Н., Эйдельнант. Местрождения нефти и газа Республики Узбекистан. –Ташкент: "ZAMINNASHR", 2019. -820 с.
- 11. Агзамов, А. А., &Хайитов, О. Г. (2010). Обоснование метода увеличения коэффициента извлечения нефти на основе обработки геологопромысловых данных. Известия высших учебных заведений. Горный журнал, (8), 47-51.
- 12. Хайитов, О. Г., Каршиев, А. Х., &Хамраев, Б. Ш. (2018). Анализ эффективности бурения горизонтальных скважин на месторождении" южный кемачи". Горный информационно-аналитический бюллетень (научно-технический журнал), (8).
- 13. Акрамов, Б. Ш., Умедов, Ш. Х., Хайитов, О. Г., Нуритдинов, Ж. Ф. У., &Мирзакулова, М. Н. К. (2019). Использование промысловых данных для определения запасов нефти залежей, разрабатываемых при водонапорном режиме. Проблемы современной науки и образования, (10 (143)).

Volume: 02 Issue: 06 | June 2021, ISSN: 2660-5317

- 14. G'afurovich, K. O. (2020). Current State And Ways To Improve The Efficiency Of Field Development In The South-Eastern Part Of The Bukhara-Khiva Region. The American Journal of Applied sciences, 2(09), 194-206.
- 15. Акрамов, Б. Ш., ХАЙИТОВ, О., & ЖАЗЫКБАЕВ, К. (2010). Экспериментальное исследование химического выщелачивания нефти из нефтяных пластов. Известия высших учебных заведений. Горный журнал, (4), 25-28.
- 16. Хайитов, О. Г., &Агзамова, Х. А. (2011). Технико-экономическая и экологическая эффективность утилизации попутного нефтяного газа. Известия высших учебных заведений. Горный журнал, (1), 38-43.
- 17. Хайитов, О. Г., Набиева, Н. К., & Махмудов, Ш. Н. (2013). Оценка степени влияния плотности сетки скважин на коэффициент нефтеизвлеченияподгазовых нефтяных залежей. Известия высших учебных заведений. Горный журнал, (6), 46-50.
- 18. Агзамов, А. А., Хайитов, О. Г., &Каршиев, А. Х. (2016). О степени влияния темпа отбора жидкости на темп отбора нефти на разных стадиях разработки залежей, представленных карбонатными коллекторами. Известия высших учебных заведений. Горный журнал, (4), 36-46.
- 19. Akramov, B. S., &Khaitov, O. G. (2017). Oil displacement by water in an electric field. Austrian Journal of Technical and Natural Sciences, (3-4), 20-22.
- 20. Акрамов, Б. Ш., Хайитов, О. Г., Нуритдинов, Ж. Ф. У., Гафуров, Ш. О. У., &Жанабоев, Д. Б. У. (2020). Влияние гидродинамического несовершенства на производительность скважин. Глобус, (5 (51)).
- 21. Хайитов, О. Г., Очилов, Ш. А., Кадиров, В. Р., & Бабаев, З. Н. (2020). Механизация горнотранспортных работ, персонал и потребляемые материальные ресурсы. In AdvancedScience (pp. 46-49).
- 22. G'afurovich, K. O. (2020). Modern State And Methods Of Enhancing The Productivity Of Field Progress In The South-Eastern Part Of Bukhara-Khiva Region. The American Journal of Social Science and Education Innovations, 2(09), 423-432.
- 23. Akramov, B. S., &Khaitov, O. G. (2015). Oil displacement by water in an electric field. EuropaischeFachhochschule, (11), 38-39.
- 24. Хайитов, О., Умирзоков, А., &Бекмуродов, А. (2020). О применении методов подсчета запасов газа в месторождении северныйгузар. Збірникнауковихпраць Λ ОГО Σ , 56-59.
- 25. Акрамов, Б. Ш., Умедов, Ш. Х., Хайитов, О. Г., Нуриддинов, Ж. Ф. У., Хамроев, У., &Зияева, Н. (2019). Инновационная технология разработки нефтегазовых залежей. Наука, техника и образование, (1 (54)).