

Volume: 03 Issue: 04 | Apr 2022 ISSN: 2660-5317

Результаты Обогашения Золотосодержащей Руды Участка Северо-Западный На Площади Кызылалмасайского Рудного Поля

А. А. Нормуродов

Младший научный сотрудник «лаборатория технологии переработки нерудного сырья» ГУ «ИМР» Azizbek19922304@mail.ru

А. У. Самалов

Директор АФ ТашГТУ alishersamadov@yandex.com

Received 24th Feb 2022, Accepted 13th Mar 2022, Online 20th Apr 2022

Аннотация: Качество гравитационных золотосодержащих концентратов оценивалось по техническим условиям TУ-Уз-65-001-94-003, которыми лимитируется содержание золота в концентрате не менее 50г/т и вредных примесей: не более 0.7% As; 0.3% Sb и 10% Al2O3

Для оценки флотационных золотосодержащих концентратов использовались технические условия TV-V3-65-001-94-006, которыми лимитируется содержание золота не менее $20\ r/m$ и вредных примесей не более 2% As, 0.3% Sb и 10% Al2O3.

Ключевые слова: Флотация, гравитация, концентрат, промпродуктхвосты, содержание, извлечение.

Гравитационное обогащение руды проводилось на лабораторном концентрационном столе марки 30КС.

Флотация руды (хвостов гравитации) осуществлялась в лабораторных флотационных машинах ФМ-1, ФМ-2, ФЛ-237 с камерами емкостью 3,0; 1,0 и 0,5л. Перед флотацией руда измельчалась навесками по 1кг в лабораторных шаровых мельницах марки 40МЛ.

Гравитационное обогащение руды

Гравитационное обогащение проводилось для выделения относительно крупных частиц самородного золота и сульфидов из руды в гравиоконцентрат. Крупность материала, поступающего на гравитационное обогащение, принималась исходя из крупности исходной руды и варьировалась в пределах -1+0 мм до -0,1+0 мм. Опыты проводились по схеме, изображенной на рис.1.

Режим работы стола:

частота качаний 110 ходов в мин.;

- амплитуда качаний 8-9 мм;
- поперечный наклон деки-18-20 мм/м;
- **расход смывной воды-4,5** л/мин.;
- навеска руды-5-10 кг.
- **р** расход смывной воды-4,5 л/мин.

СХЕМА ГРАВИТАЦИОННОГО ОБОГАЩЕНИЯ РУДЫ

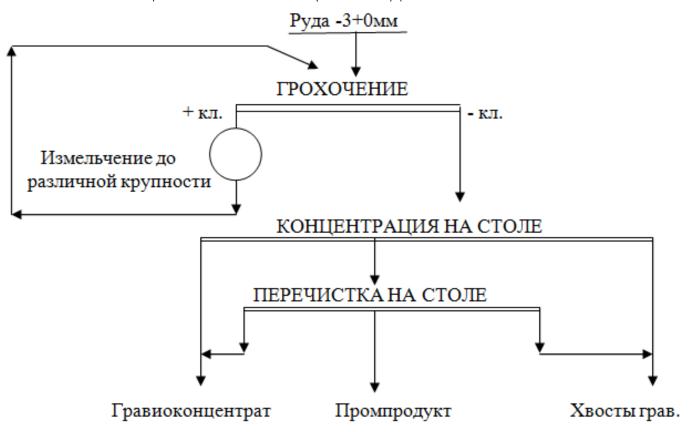


Рис.1. В табл. 1 приведены результаты гравитационного обогащения проб руды

Таблица 1. Результаты обогащения проб руд на концентрационном столе

Протудет и оборожномия	Выход,	Содерж	ание, г/т	Извлечение, %		Крупность,	
Продукты обогащения	%	Au	Ag	Au	Ag	MM	
Проба ТБ							
Гравиоконцентрат	3,65	50,64	1002,12	33,83	22,17		
Промпродукт	86,29	3,89	137,21	61,36	71,67	1.0.0	
Хвосты гравитации	10,05	2,62	101,15	4,81	6,15	-1,0+0	
Руда	100	5,47	165,20	100	100		
Гравиоконцентрат	3,15	59,7	1189,37	34,22	22,65		
Промпродукт	78,15	4,01	138,3	57,09	65,42	0.5.0	
Хвосты гравитации	18,71	2,55	105,31	8,69	11,93	-0,5+0	
Руда	100	5,49	165,19	100	100		

Volume: 03 Issue: 04 | Apr 2022, ISSN: 2660-5317

Продудет и оборожномия	Выход,	Содерж	ание, г/т	Извлече	ние, %	Крупность,	
Продукты обогащения	%	Au	Ag	Au	Ag	MM	
Гравиоконцентрат	2,98	74,68	1308,79	40,71	23,64		
Промпродукт	64,57	3,88	109,44	45,77	42,78	0.215+0	
Хвосты гравитации	32,45	2,28	170,97	13,52	33,59	-0,315+0	
Руда	100	5,47	165,19	100	100		
Гравиоконцентрат	2,84	95,86	1648,6	49,71	28,33		
Промпродукт	43,55	3,65	108,1	29,04	28,50	-0,1+0	
Хвосты гравитации	53,61	2,17	133,02	21,25	43,17	-0,1+0	
Руда	100	5,47	165,19	100	100		
-		Про	ба ТК				
Гравиоконцентрат	3,71	35,05	271,79	31,66	31,97		
Промпродукт	83,02	3,06	21,44	61,85	56,44	-1,0+0	
Хвосты гравитации	13,27	2,01	27,53	6,49	11,58		
Руда	100	4,11	31,54	100	100		
Гравиоконцентрат	3,18	43,29	318,21	33,43	32,15		
Промпродукт	77,07	3,07	21,08	57,38	51,54	0.5.0	
Хвосты гравитации	19,75	1,92	26,04	9,19	16,31	-0,5+0	
Руда	100	4,12	31,52	100	100		
Гравиоконцентрат	2,91	55,24	366,78	39,18	33,90		
Промпродукт	64,98	2,93	23,03	46,36	47,49	0.215+0	
Хвосты гравитации	32,11	1,85	18,27	14,46	18,61	-0,315+0	
Руда	100	4,11	31,51	100	100		
Гравиоконцентрат	2,68	66,28	468,98	43,25	39,88		
Промпродукт	41,94	3,88	15,37	39,62	20,45	0.1.0	
Хвосты гравитации	55,38	1,27	22,58	17,12	39,67	-0,1+0	
Руда	100	4,11	31,52	100	100		

Как видно из приведенных данных в табл.3.1, при обогащении проб на концентрационном столе наилучшие показатели для обеих проб получены при крупности помола руды -0,1+0 мм.

При этом из пробы ТБ получен гравиоконцентрат, содержащий 95,86 г/т золота и 1648,6 г/т серебра, при извлечении 49,71% и 28,33% соответственно; из пробы ТК получен гравиоконцентрат, содержащий 66,28 г/т золота и 468,98 г/т серебра, при извлечении благородных металлов 43,23% и 39,88 соответственно.

Полученные гравиоконцентраты в оптимальных условиях по содержанию ценных компонентов соответствуют требованиям технических условий ТУ-Уз-65-001-94-003 и является кондиционным.

Флотационное обогащение руды

Основой для проведения опытов являлась схема Ангренской ЗИФ, включающая измельчение руды до крупности 85% класса -0,074+0мм, основную, контрольную и перечистную операции флотации (рис.3.2).

При флотационном обогащении в качестве собирателя использовался бутиловый ксантогенат калия (БКК) в содовой среде, в качестве аполярного собирателя - веретенное масло и вспениватель – реагент T-92.

СХЕМА ФЛОТАЦИИ РУДЫ

Результаты опытов флотации проб руд с расходами реагента-собирателя приведены в табл.3.2.

Таблица 3.2.Результаты опытов флотации проб руд участка Северо-Западный

Продукты	D. IVOT 0/	Выход, % Содержание, г/т		Извлечение, %		Расход БКК в осн. +		
обогащения	Быход, 70	Au	Ag	Au	Ag	контр. флотации, г/т		
	Проба ТБ							
Концентрат	5,72	70,87	2015,4	74,02	69,70	100+50		

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES Volume: 03 Issue: 04 | Apr 2022, ISSN: 2660-5317

Продукты	Drivor 0/	Содерж	ание, г/т	Извлеч	нение, %	Расход БКК в осн. +
обогащения	Выход, %	Au	Ag	Au	Ag	контр. флотации, г/т
Промпродукт	2,85	3,05	261,21	1,59	4,50	
Хвосты	91,44	1,46	46,645	24,39	25,80	
Руда	100	5,47	165,29	100	100	
Концентрат	6,10	72,84	2071,35	81,62	76,55	
Промпродукт	3,12	3,86	271,1	2,21	5,12	120+60
Хвосты	90,78	0,97	33,34	16,17	18,33	120+00
Руда	100	5,45	165,12	100	100	
Концентрат	6,30	70,24	2037,66	81,05	77,72	
Промпродукт	4,10	4,45	231,7	3,34	5,75	140+70
Хвосты	89,78	0,95	30,43	15,61	16,53	140+70
Руда	100	5,46	165,26	100	100	
			Проба Т	К		
Концентрат	6,38	48,52	346,34	76,22	69,84	
Промпродукт	2,57	2,84	37,47	1,80	3,05	100+50
Хвосты	91,05	0,98	9,42	21,98	27,11	100+30
Руда	100	4,06	31,63	100	100	
Концентрат	6,99	49,25	352,24	83,32	78,01	
Промпродукт	5,14	3,67	41,3	4,56	6,73	120+60
Хвосты	87,87	0,57	5,48	12,12	15,26	120+00
Руда	100	4,13	31,55	100	100	
Концентрат	7,57	45,06	328,73	83,14	78,96	
Промпродукт	5,63	3,81	43,37	5,23	7,74	140+70
Хвосты	86,80	0,55	4,83	11,63	13,30	140+70
Руда	100	4,10	31,53	100	100	

Как видно из табл.3.2, при флотационном обогащении пробопределено, что оптимальный расход БКК составляет 120+60 г/т.

При флотационном обогащении пробы ТБ в оптимальном расходе БКК получен флотоконцентрат, содержащий 72,84 г/т золота и 2071,35 г/т серебра при извлечении золота 81,62% и серебра 76,55%; из пробы ТК получен флотоконцентрат, содержащий 49,25 г/т золота и 352,24 г/т серебра при извлечении золота 83,34% и серебра 78,01%.

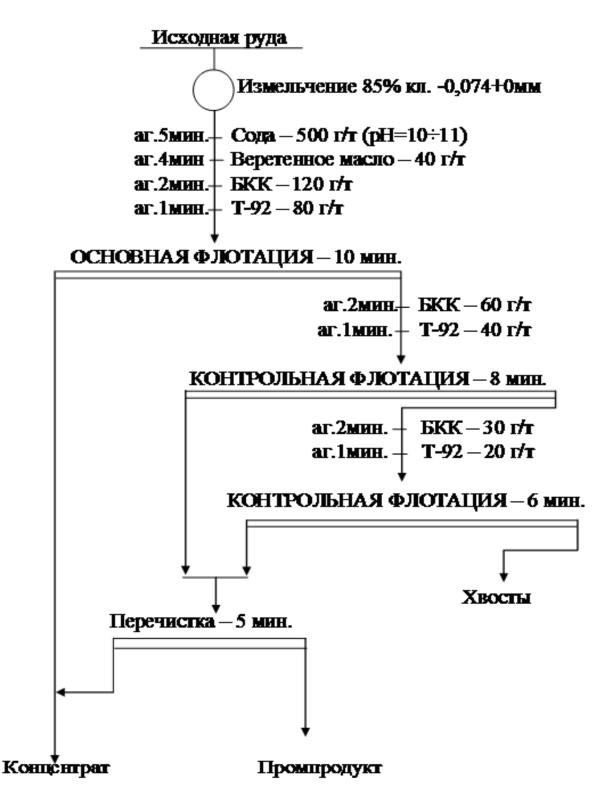
С целью повышения флотационных свойств ценных компонентов, увеличения извлечения благородных металлов и повышения качества концентрата проводились опыты флотации с применением сернистого натрия по схеме рис.3.2. Сернистый натрий подавался в основную флотацию. В опытах варьировался расход сернистого натрия. Расходы остальных реагентов выдерживались постоянными по следующему режиму (в г/т):

- ➤ сода 500;
- \triangleright веретенное масло 80;
- ▶ БКК в основную флотацию -120 и в контрольную флотацию -60;
- ➤ Т-92 в основную флотацию -80 и в контрольную флотацию -40.

Результаты опытов флотации руды с применением сернистого натрия приведены в табл.3.3.

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES Volume: 03 Issue: 04 | Apr 2022, ISSN: 2660-5317

Таблица 3.3. Результаты опытов флотации проб руды участка Северо-Западный с применением сернистого натрия


Продукты	Выход,	Содержа	ние, г/т	Извлеч	ение, %	Расход Na ₂ S, г/т	
обогащения	%	Au	Ag	Au	Ag	Расход Na ₂ S, 17T	
			Проба ТБ				
Концентрат	6,39	66,35	1867,56	76,47	72,21		
Промпродукт	3,89	3,99	185,67	2,80	4,37	$Na_2S - 100$	
Хвосты	89,72	1,28	43,11	20,72	23,41	$14a_2S - 100$	
Руда	100	5,54	165,19	100	100		
Концентрат	6,97	62,81	1789,26	79,87	75,53		
Промпродукт	4,98	3,07	138,34	2,79	4,17	$Na_2S - 150$	
Хвосты	88,05	1,08	38,08	17,34	20,30	$14a_2S - 150$	
Руда	100	5,48	165,17	100	100		
Концентрат	7,36	61,21	1758,33	81,85	78,32		
Промпродукт	5,04	2,79	120,74	2,56	3,68	$Na_2S - 200$	
Хвосты	87,60	0,98	33,94	15,60	18,00	$Na_2S - 200$	
Руда	100	5,50	165,21	100	100		
			Проба ТК				
Концентрат	6,82	46,37	323,15	76,99	69,81		
Промпродукт	7,02	2,54	28,52	4,34	6,34	$Na_2S - 100$	
Хвосты	86,16	0,89	8,74	18,67	23,85	$14a_2S - 100$	
Руда	100	4,11	31,57	100	100		
Концентрат	8,13	41,87	298,07	81,51	76,79		
Промпродукт	7,23	1,79	15,32	3,10	3,51	$Na_2S - 150$	
Хвосты	84,64	0,76	7,35	15,40	19,71	$14a_2S - 150$	
Руда	100	4,18	31,57	100	100		
Концентрат	9,04	37,22	273,66	82,81	78,62		
Промпродукт	7,83	1,38	13,39	2,66	3,33	$Na_2S - 200$	
Хвосты	83,13	0,71	6,83	14,53	18,05	11025 - 200	
Руда	100	4,06	31,45	100	100		

Как видно из табл.3.3, с использованием сернистого натрия при флотационном обогащении проб высоких показателей не достигнуто, сравнительно высокие показатели получены при расходе его 200 г/т.

При флотационном обогащении пробы ТБ получен флотоконценрат, содержащий 61,21 г/т золота и 1758,33 г/т серебра, при извлечении благородных металлов 81,85% и 78,32% соответственно; из пробы ТК получен флотоконценрат, содержащий 37,22 г/т золота и 273,66 г/т серебра, при извлечении благородных металлов 82,81% и 78,62% соответственно.

С целью снижения содержания благородных металлов и предотвращения их потери с хвостами флотации проведены опыты флотационные обогащения с включением дополнительной операции контрольной флотации (рис.3.3.).

СХЕМА ФЛОТАЦИИ РУДЫ С ДВУМЯ ОПЕРАЦИЯМИ КОНТРОЛЬНОЙ ФЛОТАЦИИ

Результаты опытов флотации руды по принципу непрерывного процесса приведены в табл.3.4.

Таблица 3.4. Результаты опытов флотации проб руд с включением дополнительной операции контрольной флотации

Продукты	Выход, %	Содержан	ние, г/т	Извлечение, %		
обогащения	Быход, 70	Au	Ag	Au	Ag	
Проба ТБ						
Концентрат	7,21	65,94	1846,17	86,93	80,58	
Промпродукт	3,37	3,42	233,43	2,11	4,76	
Хвосты	89,42	0,67	27,08	10,96	14,66	
Руда	100	5,47	165,17	100	100	
		Проба ТК				
Концентрат	8,17	44,32	316,42	88,24	82,04	
Промпродукт	5,55	3,26	35,47	4,41	6,24	
Хвосты	86,28	0,35	4,28	7,35	11,72	
Руда	102	4,11	31,52	100	100	

Как видно из табл.3.4, при флотации пробы ТБ с включением дополнительной операции контрольной флотации получен флотоконцентрат, содержащий 65,94 г/т золота и 1846,17 г/т серебра, при извлечении благородных металлов 86,93% и 80,58% соответственно; из пробы ТК получен флотоконценрат, содержащий 44,32 г/т золота и 316,42 г/т серебра, при извлечении благородных металлов 88,24% и 82,04% соответственно.

Применение данной схемы дало возможность снижения содержания благородных металлов в хвостах флотации.

Кроме того, проведены опыты флотационного обогащения хвостов гравитации. Руда, измельченная до крупности -0,1+0 мм подвергалась гравитационному обогащению на концентрационном столе с дальнейшим доизмельчением и флотацией хвостов гравитации. Флотационное обогащение проводилось в оптимальном режиме, определенный для флотации руды. (рис.3.4).

Результаты наилучшего опыта флотационного обогащения хвостов гравитации приведены в табл.3.5.

Таблица 3.5

Продукты	Drivor 0/	Содерж	ание, г/т	Извлечение, %	
обогащения	Выход, %	Au	Ag	Au	Ag
		Проба ТБ			
Концентрат	4,48	50,43	1994,52	79,84	73,33
Промпродукт	2,24	2,56	214,68	2,03	3,95
Хвосты	93,28	0,55	29,68	18,13	22,72
Хвосты грав.	100	2,83	121,85	100	100
		Проба ТК			
Концентрат	5,22	37,21	276,16	80,94	74,04
Промпродукт	4,16	2,72	32,42	4,71	6,92
Хвосты	90,62	0,38	4,09	14,35	19,04
Хвосты грав.	100	2,40	19,47	100	100

Из приведенных данных в табл. 3.5 видно, что хвосты гравитации обеих руд эффективно обогащаются флотационным методом.

При флотационном обогащении хвостов гравитации пробы ТБ в оптимальном режиме получен флотоконцентрат, содержащий 50,43 г/т золота и 1994,52 г/т серебра при извлечении золота 79,84% и серебра 73,33%; из хвостов гравитации пробы ТК получен флотоконцентрат, содержащий 37,21 г/т золота и 276,16 г/т серебра при извлечении золота 80,94% и серебра 74,04%.

При оптимальных значениях расходов реагентов и крупности измельчения проводились опыты флотации руды и хвостов гравитации по принципу непрерывного процесса (рис.3.5 и 3.6). Результаты опытов флотации руды по принципу непрерывного процесса приведены в табл.3.6, хвостов гравитации — в табл. 3.7.

СХЕМА ФЛОТАЦИИ РУДЫ ПО ПРИНЦИПУ НЕПРЕРЫВНОГО ПРОЦЕССА

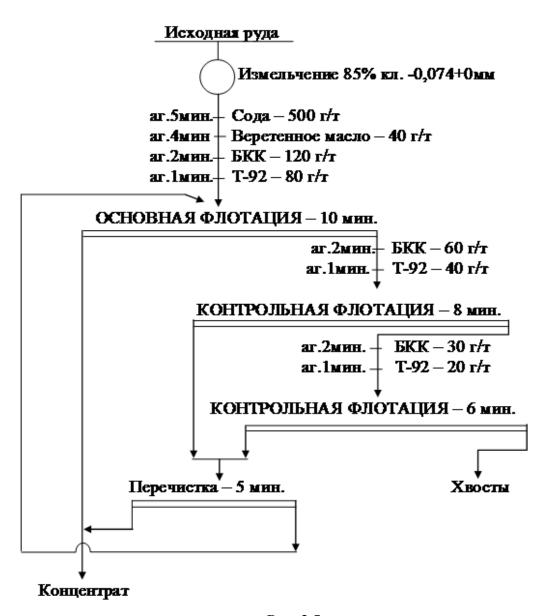


Рис. 3.5

Наименование	Выход,	Содержание, г/т		Извлечение, %		
продуктов	%	Au	Ag	Au	Ag	
Проба ТБ						
Концентрат	8,19	58,83	1687,96	88,08	83,69	
Хвосты	91,81	0,71	29,34	11,92	16,31	
Исх. проба	100	5,47	165,17	100	100	
	-	Проба ТК				
Концентрат	9,34	40,11	290,2	91,18	86,02	
Хвосты	90,66	0,4	4,86	8,82	13,98	
Исх. проба	100	4.11	165.17	100	100	

Таблица 3.6. Результаты опытов флотации руд по принципу непрерывного процесса

Как видно из приведенных данных в табл.3.6, при флотации пробы ТБ в оптимальных условиях в замкнутом цикле можно получить флотоконцентрат, содержащий 58,83 г/т золота и 1687,96 г/т серебра, при извлечении золота 88,08% и серебра 83,69%; из пробы ТК получен флотоконцентрат, содержащий 40,11 г/т золота и 290,2 г/т серебра при извлечении золота 91,18% и серебра 86,02%.

СХЕМА ФЛОТАЦИИ ХВОСТОВ ГРАВИТАЦИИ ПО ПРИНЦИПУ НЕПРЕРЫВНОГО ПРОЦЕССА

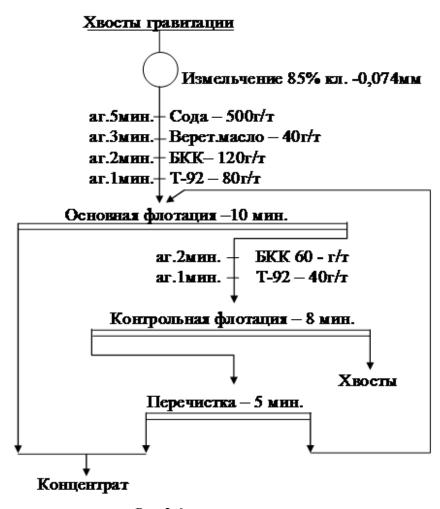


Рис.3.6

Таблица 3.7. Результаты опытов флотации хвостов гравитации по принципу непрерывного
процесса

Наименование	Выход,	Содерх	кание, г/т	Извлечение, %				
продуктов	%	Au	Ag	Au	Ag			
	Проба ТБ							
Концентрат	5,16	44,18	1839,26	80,56	77,89			
Хвосты	94,84	0,58	28,41	19,44	22,11			
Исх. проба	100	2,83	121,85	100	100			
	Проба ТК							
Концентрат	6,46	31,36	235,22	84,41	78,04			
Хвосты	93,54	0,40	4,57	15,59	21,96			
Исх. проба	100	2,4	19,47	100	100			

Как видно из приведенных данных в табл.3.7, при флотации хвостов гравитации пробы ТБ в оптимальных условиях в замкнутом цикле можно получить флотоконцентрат, содержащий 44,18 г/т золота и 1839,26 г/т серебра, при извлечении золота 80,56% и серебра 77,89%; из хвостов гравитации пробы ТК получен флотоконцентрат, содержащий 31,36г/т золота и 235,22г/т серебра при извлечении золота 84,41% и серебра 78,04%.

При переработке пробы руды применялись методы гравитации, флотации.

При гравитационном обогащении пробы на концентрационном столе наилучшие показатели получены при крупности помола руды -0,1+0 мм. При этом из пробы ТБ получен гравиоконцентрат, содержащий 95,86 г/т золота и 1648,6 г/т серебра, при извлечении 49,71% и 28,33% соответственно; из пробы ТК получен гравиоконцентрат, содержащий 66,28 г/т золота и 468,98 г/т серебра, при извлечении благородных металлов 43,23% и 39,88 соответственно.

Флотационное обогащение проводилось по различным схемам, в т.ч. по схеме Ангренской ЗИФ. При флотационном обогащении пробы руды использованы традиционные реагенты. В качестве флотационных реагентов использовались сода, бутиловый ксантогенат калия (БКК), веретенное масло, сернистый натрий и реагент-вспениватель Т-92.

При флотационном обогащении пробы ТБ по схеме Ангренской ЗИФ в оптимальном расходе реагентов в открытом цикле получен флотоконцентрат, содержащий 72,84 г/т золота и 2071,35 г/т серебра при извлечении золота 81,62% и серебра 76,55%; из пробы ТК получен флотоконцентрат, содержащий 49,25 г/т золота и 352,24 г/т серебра при извлечении золота 83,34% и серебра 78,01%.

С целью снижения содержания благородных металлов и предотвращения их потери с хвостами флотации проведены опыты флотационного обогащения с включением дополнительной операции контрольной флотации.

При флотации пробы ТБ с включением дополнительной операции контрольной флотации в оптимальном режиме получен флотоконцентрат, содержащий 65,94 г/т золота и 1846,17 г/т серебра, при извлечении благородных металлов 86,93% и 80,58% соответственно; из пробы ТК получен флотоконценрат, содержащий 44,32 г/т золота и 316,42 г/т серебра, при извлечении благородных металлов 88,24% и 82,04% соответственно. Результаты испытаний показали, что применение данной схемы дает возможность снижения содержания благородных металлов в хвостах флотации.

При флотационном обогащении хвостов гравитации пробы ТБ в оптимальном режиме в открытом цикле получен флотоконцентрат, содержащий 50,43 г/т золота и 1994,52 г/т серебра при

Volume: 03 Issue: 04 | Apr 2022, ISSN: 2660-5317

извлечении золота 79,84% и серебра 73,33%; из хвостов гравитации пробы ТК получен флотоконцентрат, содержащий 37,21 г/т золота и 276,16 г/т серебра при извлечении золота 80,94% и серебра 74,04%.

При оптимальных значениях расходов реагентов и крупности измельчения проводились опыты флотации руды и хвостов гравитации по принципу непрерывного процесса.

При флотации пробы ТБ в оптимальных условиях в замкнутом цикле получен флотоконцентрат, содержащий 58,83 г/т золота и 1687,96 г/т серебра, при извлечении золота 88,08% и серебра 83,69%; из пробы ТК получен флотоконцентрат, содержащий 40,11 г/т золота и 290,2 г/т серебра при извлечении золота 91,18% и серебра 86,02%.

Флотацией хвостов гравитации пробы ТБ в оптимальных условиях в замкнутом цикле получен флотоконцентрат, содержащий 44,18 г/т золота и 1839,26 г/т серебра, при извлечении золота 80,56% и серебра 77,89%; из хвостов гравитации пробы ТК получен флотоконцентрат, содержащий 31,36г/т золота и 235,22г/т серебра при извлечении золота 84,41% и серебра 78,04%.

По результатам выполненных лабораторных технологических исследований для обогащения исследованных золотосодержащих руд участка Северо-Западный рекомендуется гравитационнофлотационная схема переработки, которая включает измельчение руды до класса -0,1+0 мм, гравитационное обогащение на концентрационном столе, доизмельчение хвостов гравитации до крупности помола 85% класса -0,074 мм с последующим флотационным обогащением.

При обогащении пробы ТБ по рекомендуемой схеме получен гравиоконцентрат, содержащий 95,86 г/т золота и 1648,6 г/т серебра при извлечении металлов 49,77% и 28,34% соответственно. Флотационным обогащением хвостов гравитации получен флотоконцентрат, содержащий 44,18 г/т золота и 1839,26 г/т серебра при извлечении золота 40,5% и серебра 55,82% от руды. Суммарное извлечение золота в объединенный концентрат составляет 90,27% и серебра 84,16%.

При обогащении пробы ТК по рекомендуемой схеме получен гравиоконцентрат, содержащий 66,28 г/т золота и 468,98 г/т серебра при извлечении металлов 43,22% и 39,88% соответственно. Флотационным обогащением хвостов гравитации получен флотоконцентрат, содержащий 33,36 г/т золота и 235,22 г/т серебра при извлечении золота 47,97% и серебра 46,92% от руды. Суммарное извлечение золота в объединенный концентрат составляет 91,19% и серебра 86,79%.

Полученные концентраты по содержанию ценных компонентов отвечают требованиям технических условий ТУ-Уз-65-001-94-003 и ТУ-Уз-65-001-94-006, предъявляемые к концентратам, поступающих на медеплавильные заводы.

Таким образом, при переработке проб руды участка Северо-Западный Кызылалмасайского рудного поля по рекомендуемой схеме можно получить высокие технологические показатели по извлечению золота и серебра.

Список литературы:

- 1. Зеленов В.И. Методика исследования золотосодержащих руд. М., Недра, 1978, 301с.
- 2. Абрамов А.А. Переработка, обогащение и комплексное использование твердых полезных ископаемых. Том II. Технология обогащения полезных ископаемых. М., 2004, 510с.
- 3. Абрамов А.А. Флотационные методы обогащения. М., Недра, 1984, 383с.
- 4. Барченков В.В. Основы сорбционной технологии извлечения золота и серебра из руд. М., Металлургия, 1982, 128с.

Volume: 03 Issue: 04 | Apr 2022, ISSN: 2660-5317

- 5. Хабиров В.В., Забельский В.К., Воробьев А.Е. Прогрессивные технологии добычи и переработки золотосодержащего сырья. М., Недра, 1994, 272с.
- 6. Олевский В.А. Размольное оборудование обогатительных фабрик. М., Госгортехиздат, 1983.
- 7. Поваров А.И. Гидроциклоны на обогатительных фабриках. М., Недра, 1988.
- 8. Разумов К.А. Пути повышения производительности замкнутого цикла измельчения.- Горный журнал,1993, №11
- 9. Руденко К.Г., Шемаханов М.М. Обезвоживание и пылеулавливание на обогатительных фабрикпх. М., Недра, 1987.
- 10. Справочник по обогащению руд в 3-х томах Гл. ред. О.С. Богданов. Т. 1. Подготовительные процессы. М., Недра, 1982.