

Volume: 03 Issue: 05 | May 2022 ISSN: 2660-5317

Исследование Химического И Минералогического Составов Лежалых Хвостов Ингичкинской Обогатительной Фабрики

Хасанов А. А.

Доцент кафедры «Горное дело» Алмалыкского филиала Ташкентского государственного технического университета имени Ислама Каримова

Гоибназаров Б. А.

Старший преподаватель кафедры «Горное дело» Алмалыкского филиала Ташкентского государственного технического университета имени Ислама Каримова

Баратов С. А.

Помощник председателя правления АО «Алмалыкский ГМК»

Абдусаматова М. А.

Студентка Алмалыкского филиала Ташкентского государственного технического университета имени Ислама Каримова

Received 26th Mar 2022, Accepted 15th Apr 2022, Online 29th May 2022

Аннотация: Извлечение вольфрама из техногенных отходов (лежалых хвостов обогатительных фабрик и сбросных кеков), переработка концентратов и извлечение из них полезных компонентов с последующим использованием их в качестве вторичного сырья является одной из актуальных задач в сфере углубленной и комплексной переработки минерального сырья. Данная задача имеет несколько приоритетов. Во-первых, металл, извлеченный из вторичного сырья, значительно дешевле, чем извлечённый металл из руды, из-за целого ряда сокращения технологических переделов переработки. Во-вторых, после извлечения металлов из отходов последний может быть полезно утилизирован в готовую продукцию, создавая безотходную технологию.

Ключевые слова: вольфрамсодержащего сырья, концентрат, промпродукт, реагент, извлечение, содержание, выход продукта, шеелитовых руд, минеральный состав, химический анализ, шламового поля, кек, гравитационное обогащение, лежалый хвост.

Введение. В Республике проводятся комплексные исследования по совершенствованию технологии обогащения вольфрамовых руд, разработка технологических схем переработки концентратов редких металлов и техногенных образований в виде кеков, шламов и хвостов установление закономерностей количественного распределения вольфрама по фракциям и научное обоснование эффективности применения процессов гравитационного обогащения является актуальной и вострбованной.

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES Volume: 03 Issue: 05 | May 2022, ISSN: 2660-5317

В стратегии действий по дальнейшему развитию Республики Узбекистан определены задачи по «повышения промышленности на качественно новый уровень, глубокой переработки местных источников сырья, ускорения производства готовой продукции, освоение новых видов продукции и технологий». Важной проблемой создания безотходной технологии являются её организационно-технические принципы, где важную роль имеет разработка способов переработки и выбор оборудования, структура подразделений и экономическая эффективность. В этом аспекте имеется положительный опыт ряда горно-обогатительных предприятий, как в зарубежных странах, так и в странах СНГ.

Методы исследований. Для проведения исследований были отобраны пробы из лежалых хвостов Ингичкинской обогатительной фабрики, химический анализ отобранных проб проведен в Центральной аналитической лаборатории АО «АГМК».

Минеральный состав хвостов определен по данным минералогического анализа усредненной пробы и с помощью минераграфии – по брикетам, изготовленным из сульфидного продукта (пенного продукта флотации чернового гравитационного концентрата).

Для минералогического анализа пробу предварительно подвергали гравитационно-магнитному фракционированию по схеме, показанной на рис. 2.

Результаты химического анализа и минералогического состава лежалых хвостов приведены в табл. 1 и на рис. 1.

Элементы и	Содержание %	Элементы и оксиды	Содержание %
оксиды			
SiO ₂	48,55	CO_2	6,64
Fe ₂ O ₃	14,70	S общая	1,28
K ₂ O	0,80	Mo	0,02
Na ₂ O	1,20	As	0,01
CaO	18,95	Pb	следы
MgO	2,21	Cu	0,02
Al ₂ O ₃	3,96	Zn	0,001
TiO ₂	0,14	Сумма	100,0
P_2O_5	0,11	FeO	10,42
MnO	1,40	SO ₃	0,15
WO ₃	0,066	Потери при прокаливании	6,76

Таблица 1. Химический состав хвостов Ингичкинской обогатительной фабрики

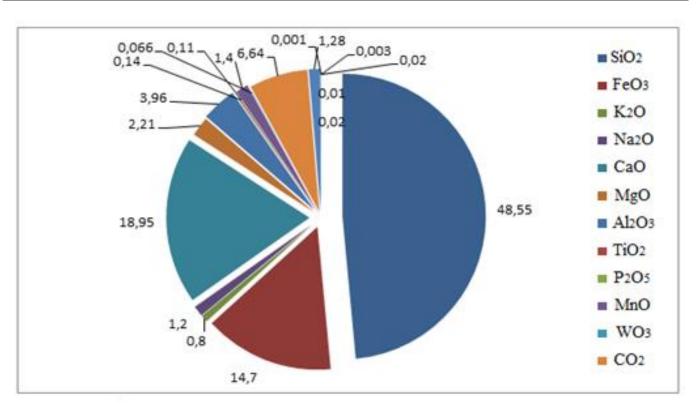


Рис. 1. Распределения основного химического соединения хвостов Ингичкинской обогатительной фабрики

Из рисунка 1 можно сделать вывод, что основная масса ценного компонента находится в оксидных соединениях.

Затем из каждой фракции изготавливали монтированные прозрачные шлифы, в которых под микроскопом выполнялась точная диагностика минералов и подсчитывались их количественные соотношения.

Химический состав проб был изучен с применением количественного рентгенофлуоресцентного анализа на приборе PW-1404 фирмы «Филипс» (Голландия). Химический состав проб хвостов по основным компонентам приведен в табл. 2-3

Полный анализ исследуемых проб включает: химический анализ (XRF, LECO, S-SO4), анализ гранулометрического состава (PSD), определение содержания влаги, определение насыпной плотности.

Химический анализ лежалых хвостов показывает, что общее содержание серы и углерода определялось на основе метода LECO. Содержание Fe, SiO_2 , Al_2O_3 , CaO определялось при помощи метода рентгенофлуоресцентного анализа XRF. Гранулометрический состав лежалых хвостов определен посредством метода анализа гранулометрического состава лазерной дифрактацией (Cilas).

Рис. 2. Схема гравитационно-магнитного фракционирования средней пробы

Таблица 2. Результаты гравитационно-магнитного фракционирования и минеральный состав фракции

Фракция	Вес, г	Минеральный состав	Выход, %	
Хвостохранилище №1, Скв.21 профиль IV, интервал 0-5 м				
<2,9 г/м ³	12,80	Кварц, плагиоклаз, слюда.	41,75	
2,9-3,3 г/м ³	12,00	Слюда, кальцит, волластонит.	39,15	
3,3-4,0 г/m ³	2,00	Уралит, геденбергит, гранат.	6,52	
>4,0 г/м магн	1,00	Пирротин (преобладает), магнетит.	3,26	
>4,0 г/м с.эл-м	2,00	Пирротин, пирит.	6,52	
>4,0 г/м сл.эл-магн	0,20	Сульфиды, геденбергит.	0,65	
>4,0 г/м эл-магн	0,40	Сульфиды (90%), шеелит.	1,30	
>6,0 г/м не-магн	0 г/м не-магн 0,26 Шеелит, сульфиды, висмут самородный,		0,85	
		золото самородное		
Всего	30,66		100,0	
Средняя проба из хвостохранилища №2				
<2,9 г/м ³	15,38	Кварц, плагиоклаз, слюда.	39,16	
2,9-3,3 г/м ³	15,94	Слюда, кальцит, волластонит.	40,59	
3,3-4,0 г/м ³	2,07	Уралит, геденбергит, гранат.		
>4,0 г/м магн	2,68	Пирротин (преобладает), магнетит. 6,84		

>4,0 г/м с.эл-м	2,04	Пирротин, пирит.	5,19
>4,0 г/м сл.эл-магн	0,38	Сульфиды, геденбергит.	0,97
>4,0 г/м эл-магн	0,48	Сульфиды (90%), шеелит.	1,22
>6,0 г/м не-магн	0,29	Шеелит, сульфиды, висмут самородный,	0,76
		золото самородное	
Всего	39,27		100,0

Таблица 3. Минеральный состав сырья техногенного месторождения Ингички (средняя проба из хвостохранилища)

Минералы	Минералы Химическая формула		Содержание, %
Кварц	SiO_2	г/см ³ 2.65	16.0
Плагиоклаз	слаз (Na,Ca) AlSi ₃ O ₈		14.0
Биотит	$KAl_2[AlSi_3O_{10}](OH,F)_2$	2.88	2.6
КПШ		2.62	3.2
Серицит			1.4
Хлорит			1.2
Кальцит	CaCO ₃	2.71	9.8
Волластонит	$Ca_3Si_3O_3$	2.9	4.9
Энстатит и		3.5	2.6
гиперстен			
Роговая	$(Ca,Na,K)_2(Mg,Fe^{2+}Fe^{3+},Al)_5[(Si,Al)_2Si_6O_{22}]$	2.8-3.6	6.5
обманка	(OH,F) ₂		
Геденбергит	CaFeSi ₂ O ₆	3.5	18.2
Авгит		3-3.5	12.6
Диопсид		3.5	2.6
Эпидот		3.21-3.52	1.3
Гессонит	Ca ₃ Al ₂ [SiO ₄] ₃ , примесь V	3.6	< 0.01
Сфен		3.3-3.6	0.4
Шпинель		3.5-4.1	< 0.01
Сфалерит	ZnS	4.0	< 0.01
Антимонит	Sb_2S_3	4.66	< 0.01
Пирротин	Fe _{1-x} S	4.7	1.8
Циркон	ZrSiO ₄	4.0-5.1	Следы
Магнетит	Fe ₃ O ₄	4.8-5.3	1.2
Гематит		5.26	0.7
Пирит	FeS_2	4.9-5.2	0.5
Марказит	FeS_2	5.1	0.5
Халькопирит	CuFeS ₂	4.9-5.2	0.06
Молибденит	MoS_2	5.5	< 0.01
Тунгстит	$WO_2(OH)_2$	5.5	< 0.01
Джемсонит	Pb ₄ FeSb ₆ S ₁₁	5.5-6	< 0.01
Шеелит	CaWO ₄	6.1	0.12
Арсенопирит	FeAsS	5.9-6.3	< 0.01
Висмутин	Bi_2S_3	6.78	< 0.01

Volume: 03 Issue: 05 | May 2022, ISSN: 2660-5317

Касситерит	SnO_2	6.5-7.1	Следы
Вольфрамит	FeWO_4	7.12	< 0.01
Галенит	PbS	7.6	< 0.01
Висмут.самор.	Bi	9.83	< 0.01
Золото.самор.	Au,Ag	19.3	Следы

Результаты и обсуждение. В процессе выполнения научно-исследовательских работ по данной статья использованы разные реагенты и несколько лабораторных установок и методик, которые изложены ниже.

При выполнении экспериментов был использован ряд препаратных реагентов, список которых приведен в табл. 4.

Таблица 4. Физико-химические свойства основных используемых реагентов

No	Наименования	Химическая формула	Плотность	t ⁰ кип,	Растворимость
	реагентов			⁰ С	
1		R-O-C=S			Растворимость
	Ксантогенат	SH (Me)			ксантогенатов
					возрастает с
					понижением РН
					среды и с
					повышением t^0
2		Одно и двухатомные			
	Вспениватель Т-	спирты диоксанового и			
	92	пиранового рядов		85	3
		_	1,02-1,06		
3	Олеиновая кислота	C ₁₇ H ₃₃ COOH			
4	Соляная кислота	HCl			

Для проведения исследований создали экспериментальную схему (рис. 3), состоящую из исходного бункера, винтового сепаратора, концентрационного стола, отсадочной и флотационной машины для проведения основной и контрольной флотации объёмом 3 и 1 литр, лабораторного сгустителя, сушильной печи для сушки концентрата и хвостов. Для технологического тестирования способов гравитационного обогащения минерального сырья НПО АО «АГМК» использовались следующие аппараты:

Рис. 3. Экспериментальная технологическая схема

Лабораторный винтовой сепаратор (параметры сепаратора: длина -1700 мм, ширина -120 мм, число заходов -1, число витков -3, шаг спирали-190 мм, угол наклона и уклон -150). Исследования проводились при следующем режиме: масса навески исходного материала -15 кг, плотность пульпы -20% твердого, крупность исходного материала -3+0 мм. Все хвосты первичного обогащения минерального сырья крупностью -3+0 мм и -2+0 мм объединялись, перемешивались, обогащались на винтовом сепараторе, концентрационном столе.

Использованный концентрационный стол марки СКО-2 имел следующие характеристики (параметры стола: производительность, $\tau/\tau - 0.08$ -0,3, потребляемая мощность, $\kappa B\tau - 0.37$, площадь деки, $m^2 - 2$, число дек- 1, ход деки, mm - 1.5-17, частота колебаний деки, ход/мин – 250-350, размеры (ширина х длина х высота), mm - 1250x3000x1000. Исследования на концентрационном столе проведены при следующем режиме: масса навески

исходного материала -15 кг, число колебаний -350 в минуту; длина хода в основной операции -12 мм, в перечистке -8 мм.

Заключение. Всесторонне исследован химический, вещественный и минералогический состав лежалых хвостов Ингичкинской обогатительной фабрики. Проведен качественный фазовый анализ, определяющий состав лежалых хвостов Ингичкинской обогатительной фабрики. Определена форма проявления полезного компонента в хвостах фабрики. Полностью описаны экспериментальные установки для проведения лабораторных и опытно-промышленных

Volume: 03 Issue: 05 | May 2022, ISSN: 2660-5317

испытаний, в том числе обоснованы установки: концентрационной стол СК-2 и винтовой сепаратор для обогащения вольфрамсодержащих хвостов.

ЛИТЕРАТУРЫ:

- 1. Mutalova M.A., Khasanov A.A., Ibragimov I.S., Masidikov E.M Development of Technology for Extraction of Tungsten-Containing Industrial Product from Slurry Cakes // International Journal of Advanced Research in Science, Engineering and Technology. National Institute of Science Communication and Information Resources. India, 2019. –Vol. 6. Issue 12. pp. 12334-12338.
- 2. Mutalova M.A., Khasanov A.A., Ibragimov I.S., Melnikova T.E. Development of Technology for Producing Tungsten Product with WO3 Content Not Lower than 40% from Technogenic Waste SIE «Almalyk MMC» // International Journal of Advanced Research in Science, Engineering and Technology. National Institute of Science Communication and Information Resources. India, 2019. –Vol. 6. Issue 12. pp. 12329-12333.
- 3. Муталова М.А., Хасанов А.А. Разработка технологии извлечения вольфрама из отвальных хвостов НПО АО «Алмалыкский горно-металлургический комбинат» // Universum: технические науки: научный журнал. № 12(69). Часть 1. М., Изд. «МЦНО», 2019. С.37-40.
- Mutalova M.A., Khasanov A.A. Improvement of Technology for Enrichment of Tungsten Concentrate from Cake of NPO Almalyksky MMC JSC by Gravitational Methods // International Journal of Advanced Research in Science, Engineering and Technology. – National Institute of Science Communication and Information Resources. – India, 2020. –Vol. 7. – Issue 5. – pp. 13863-13868.
- 5. Mutalova M.A., Khasanov A.A., Masidikov E.M. Extraction of a Tungsten-Containing Product from the Left Tails of the Ingichin Factory // International Journal of Advanced Research in Science, Engineering and Technology. National Institute of Science Communication and Information Resources. India, 2020. –Vol. 7. Issue 5. pp. 13850-13856.
- 6. Хасанов А.С., Хасанов А.А., Муталова М.А. Разработка рациональной технологии извлечения вольфрамового промпродукта содержащего не ниже 40% WO₃ из отвальных кеков НПО АО «Алмалыкский горно-металлургический комбинат» // Композиционные материалы. Ташкент, 2020. №4. С. 144-148.
- 7. Хасанов А.С., Муталова М.А., Хасанов А.А. Извлечение ценных компонентов из техногенных отходов // Материалы Международной научно-технической конференции. Ташкент, 2014 г. С. 232-234.
- 8. Насиров У.Ф., Хасанов А.А., Мельникова Т.Е. Рациональное использование минерального сырья и техногенных отходов. // Материалы Международной научно-технической конференции. Ташкент, 2018 г. С. 290-292.
- 9. Муталова М.А., Хасанов А.А., Ачилов У., Шакаров Т. Разработка технологии извлечения вольфрамового промпродукта из отвальных кеков НПО АО «Алмалыкский горнометаллургический комбинат» // Материалы Международной научно-практической конференции на тему: «Современные проблемы и инновационные технологии решения вопросов переработки техногенных месторождений «Алмалыкского ГМК»». Алмалык, 2019 г. С. 91-93.
- 10. Бердиева Дилрабо Хасановна Косимов Мухиддин Одилович. «Выбор оптимального варианта системы разработки на руднике Каульды» Oriental Renaissance: Innovative, educational, natural and social sciences, ст 235-240, 2021/7

Volume: 03 Issue: 05 | May 2022, ISSN: 2660-5317

- 11. Бердиева Дилрабо Хасановна Косимов Мухиддин Одилович «Усовершенствование закладки труб в условиях шахты Каульды» Central Asian Academic Journal of Scientific Research. ст. 52-59 2022/2-312.
- 12. Хасанов А.А. Состояние добычи и переработки вольфрамовых руд и концентратов в мировой практике // Journal of Advances in Engineering Technology Vol.1(5) 2022 pp. 68-71.
- 13. Абдусаматова Н.С. / Сопоставательный анализ доставки руды различными видами транспорта из месторождений с глубоких горизонтов // Oriental renaissance. №4,VOL 1. ISSUE 4. ISSN 2181-1784. SJIF 2021. С 463-469.