

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 03 Issue: 06 | Jun 2022 ISSN: 2660-5317

ТЕОРЕТИЧЕСКИЕ МОДЕЛИ МАССЫ ЧАСТЕЙ ПЛОДОВ ШИПОВНИКА НА ОСНОВЕ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

т.ф.н. доцент. Алижанов Джаббар Акилбекович

Старшый преподавател Ташкентский институт инженеров ирригации и механизации сельского хозяйства, национального исследовательского университета

Исмайлов Халик Шадманович Дияров Азамат Чориевич

Преподаватели кафедры хранения, переработки и механизации сельхозпродукции Термезского института агротехнологии и инновационного развития

Received 4th Apr 2022, Accepted 5th May 2022, Online 4th Jun 2022

Аннотация. В работе приводятся экспериментальные результаты по распределению масс плодов шиповника сорта «Rosa Conina» и их частей (оболочки, семян), а также получены теоретические модели в виде аналитических выражений адекватно описывающих экспериментальные данные. Полученные уравнения могут использоваться для инженерных расчетов оборудование и технологии переработки данного сырья.

Ключевые слова: шиповник, «Rosa Conina», масса оболочки.

Нами проведены исследования составных частей шиповника сорта «Rosa Conina» с целью изучения особенностей статистических распределений масс цельных плодов, оболочки и семян, а также получение теоретических моделей в виде аналитических выражений адекватных результатам экспериментов.

В табл.1 приведены результаты измерений массы целых плодов, оболочки и семян.

Результаты измерений массы плодов, оболочки и семян

Табл.1

Число интервалов	1	2	3	4	5	6				
Масса 5 плодов, гр*										
Число попаданий в интервал	5	20	25	20	20	10	$\Sigma \pi_i = 100$			
Π_i	7	20	23	20	20	10	∠II _l −100			
Частота $P_{xi} = \frac{\Pi_i}{N}$	0,05	0,2	0,25	0,2	0,2	0,1	$\Sigma P_{xi}=1$			
Случайная величина <i>xi</i> в серединах интервалов, гр	3,43	3,87	4,31	4,75	5,19	5,03	x_{max} =5,85 x_{min} =3,21			
Сумма накопленных частот F_{xi}	0,05	0,25	0,5	0,7	0,9	1,0				

Масса оболочки 5 плодов, гр									
Число попаданий в интервал Π_i	5	15	20	23	27	10	$\Sigma \pi_i = 100$		
Частота $P_{yi} = \frac{\pi_i}{N}$	0,05	0,15	0,2	0,23	0,27	0,1	$\Sigma P_{yi}=1$		
Случайная величина уі в серединах интервалов, гр	1,865	2,075	2,285	2,495	2,705	2,915	y_{max} =3,02 y_{min} =1,76		
Сумма накопленных частот F_{yi}	0,05	0,2	0,4	0,63	0,9	1,0			
Масса семян 5 плодов**									
Число попаданий в интервал Π_i	10	20	25	20	15	10	$\Sigma \pi_i = 100$		
Частота $P_{zi} = \frac{\Pi_i}{N}$	0,1	0,2	0,25	0,2	0,15	0,1	$\Sigma P_{zi}=1$		
Случайная величина <i>zi</i> в серединах интервалов, гр	1,575	1,805	2,035	2,265	2,495	2,725	<i>z_{max}</i> =2,84 <i>z_{min}</i> =1,46		
Сумма накопленных частот F_{zi}	0,1	0,3	0,55	0,75	0,9	1,0			

^{*} влажность плодов 14-17 %;

Т.к. интервалы разбиения для плода и его частей весьма малы, то с целью обеспечения наилучшего заполнения интервалов было принято провести 100 измерений с навесками из 5 плодов, подбираемых случайным образом.

Анализ экспериментальных распределений показал, что для целых плодов можно применить аналитическую модель

$$P_{x} = A \cdot e^{-\frac{(x-\bar{x})^{2}}{2 \cdot \sigma^{2}}} \tag{1}$$

после определения значений A, \bar{x} , σ , т.к. подстановка экспериментальных значений $\bar{x}=4,5940$, σ =0,5308 и A = $\frac{1}{\sigma\sqrt{2\pi}}=0,7518$ в уравнение (1) не дает удовлетворительного результата. По этому для уточнения параметров уравнения (1) преобразуем его путем замены переменных к линейному относительно уточняемых параметров:

$$z=a_0+a_1x+a_2x^2$$
 (2 где $z=lnP_x$; $a_0=lnA-rac{ar{x}^2}{2\cdot\sigma^2}$; $a_1=rac{ar{x}^2}{\sigma^2}$; $a_2=rac{1}{2\cdot\sigma^2}$.

Вычисления коэффициентов уравнения (2) производилось на ПВМ в системе MatLAB с использованием файла [1]

Polyfin (x, z, 2),

в результате реализации которого получили $a_0=a_1=a_2=$, а затем $\bar{\mathbf{x}}_m=4,642;$ $\sigma_m=0,6915;$ A=0,2622.

Отсюда получим теоретическую модель в виде уравнения

$$P_{xm}=0.2622\cdot e^{-\frac{(x-4.648)^2}{2\cdot0.6915^2}}$$
. (3) Проверка H_0 гипотезы по X^2 критерию при уровне значимости α =0,05 и степени свободы k =m-c-

Проверка H_0 гипотезы по X^2 критерию при уровне значимости α =0,05 и степени свободы k=m-с-1=3 (здесь с- число параметров - \bar{x} и σ) дает расчетную величину [2]:

$$x_p^2 = \sum_{i=1}^m \frac{(M_i - nP_i)^2}{nP_i} = 2,4739,$$

где m=6 – число интервалов; n=100- число опытов;

^{**} массы 1000 семян средняя – 16,38 гр.

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES

Volume: 03 Issue: 06 | Jun 2022, ISSN: 2660-5317

 $M_i = nP_i$ -число попаданий в *i* интервал случайной величины х (по эксперименту);

 nP_{xm} -теоретическое число попаданий случайной величины х в i- интервал.

Из табл. 1.1.2.7. x^2 распределения [2] имеем $x_{\text{табл}}^2 = 7.8$. Т.к. $8_p^2 < 8_{\text{табл}}^2$ то можно считать, что теоретическая модель (3) достаточно хорошо соответствует экспериментальным данным.

В результате анализа особенностей экспериментальных плотностей распределении P_{yi} и P_{zi} были получены теоретические модели:

$$P_{ym} = 6,1291 - 9,2289 \cdot Y + 4,5269 \cdot Y^2 - 0,7099 \cdot Y^3$$
 (4)

$$P_{zm}$$
=-5,1291-7,3369·Z+3,0879·Z²-0,4186·Z³ (5)

Расчетные значения x^2 -критерия для экспериментальных и теоретических плотностей распределений: $x_p^2 = 1,3201$ -для распределении массы оболочек; $8_p^2 = 0,3365$ -для распределений массы семян. Это значительно меньше $x_{\text{табл}}^2$, поэтому уравнение (4) и (5) можно считать адекватным экспериментальным результатам.

На рис.1. показаны теоретические и экспериментальные плотности распределений, из которых видно некоторая асимметричность. Отсутствие асимметрии обеспечивается если центральные моменты третьего (и более третьего, но нечетного порядка) порядка равен нулю, т.е $(x - \bar{x})^3 = 0$. Величина асимметрии определятся коэффициентом асимметрии

$$C = \frac{\sum (x - \overline{x})^3}{\sigma^3}.$$

В результате вычислений по этой формуле для распределений массы цельных плодов получили C_x =-3,4472 (экспериментальная плотность распределения); C_{xm} =-2,9945 (теоретическая плотность распределения), что указывает на правостороннюю асимметрию, причем C_{1m} на 14 % меньше C_1 . Т.е. теоретическая кривая более асимметрична.

Также для распределений:

 P_y и P_{ym} получено C_y =-6,3552; C_{ym} =-5,8895;

 P_z и P_{zm} получено $C_z = 1,6784$; $C_{zm} = 1,3505$;

Наибольшей плотностью обладает распределение массы оболочки σ =0,337, а наиболее удачная аппроксимация теоретической моделью распределение массы семян 8^2 =0,3365 при C_z =1,6784 и C_{zm} =1,3505.

Распределение случайной величины позволяет определить вероятность попадания случайной величины в любой интервал на основе экспериментальных результатов. При использовании теоретических моделей вероятность попадания случайной величины в заданный интервал (например для случайной величины x при попадании в интервал $x_1=3,87, x_2=4,75$)

$$F_m(x_1 \le x \le x_2) = \int_{x_1}^{x_2} P_{xm} \cdot dx = \int_{3.87}^{4.75} 0.2622 \cdot \exp(-\frac{(x-4.648)^2}{2 \cdot 0.6915^2}) dx = 0,478;$$
 также $F_m(3,21 \le x \le 5,85) = \int_{3,21}^{5,85} P_{xm} \cdot dx = 1,021.$

Интегрирование произведено на ΠBM в системе MatLAB по файлу $F=`func`; quad (F, x_1, x_2)$. Аналогичные вычисления проведены и для моделей P_{ym} и P_{zm} и показали хорошее соответствие полученных результатов с экспериментальными распределениями.

Использованная литература

- 1.В.П.Дьяконов. Справочник по применению РС MatLAB, М., "Наука", 1993.
- 2. И.Н.Бронштейн и др. Справочник по математике. М., "Наука", 1986.