The Effect of Magnetic Field Strength in DC Magnetron

  • Nabhan Abdulkareem Hamdon Department of Petroleum and Refining Engineering, College of Petroleum and Mining Engineering, University of Mosul, Mosul, Iraq
Keywords: Magnetron, Plasma Discharge, Single Langmuir Probe, Plasma Parameters

Abstract

Plasma parameters (electronic temperature , electronic density ( ), electronic cyclotron frequency, ionic cyclotron frequency, electronic gyro radius, ionic gyro radius, drift velocity ( ), plasma potential ( ), were determined under the effect of magnetic field strengths ((0.021-0.062) Tesla) in homemade  magnetron sputtering system and discussed to improve the operation of it. Argon gas pressures is (0.5 mbar), a single langmuir probe was used as diagnostic tool. Generally it's found that the behaviors of the electronic temperature, the electronic and ionic gyro radius and the plasma potential decrease with increasing the magnetic field strengths, but the electronic density, electronic and ionic cyclotron frequencies and the floating potential increase with increasing the magnetic field strengths.

Downloads

Download data is not yet available.

References

1. Hamidreza Hajihoseini , Martin Cada , Zdenek Hubicka , Selen Ünaldi , Michael A. Raadu, Nils Brenning, The Effect of Magnetic Field Strength and Geometry on the Deposition Rate and Ionized Flux Fraction in the HiPIMS Discharge, J. of Plasma 2 15 (2019) 201-221.
HTTP://doi.org/10.3390/plasma2020015
2. Fatin Assim Youssif, Entessar H.A. Al-Mosawe, Wafaa A. Hussain, Studying the Physical and Biological Characteristics of Denture Base Resin PMMA Reinforced With ZrO2 and TiO2 Nanoparticles, Karbala Int J Mod Sci. 8 (2022) 503-513. https://doi.org/10.33640/2405-609X.3251.
3. Abdulrahman Ismael Ahmed, N A Hamdon , A comparative study of electron transport coefficients in the pristine and dusty argon plasma, Indian Journal of Physics 88 12 (2014) 1299-1303. DOI:10.1007/s12648-014-0568-5
4. Matthew J. Goeckner, Johm A. Goree, Torrence E. Sherdian, Monte Carlo simulation of ions in a magnetron plasma, IEEE Transactions on Plasma Science 19 2 (1991) 301-308. DOI: 10.1109/27.106828
5. Murphy, M.J.; Cameron, D.C.; Karim, M.Z.; Hashmi, M.S.J., Magnetic fields in magnetron sputtering systems, j. of Surf. Coat. Technol. 57 1 (1993) 1–5. https://doi.org/10.1016/0257-8972(93)90329-M
6. Kohki Noda, Toyoaki Hirata, Takashi Kawanabe, Masahiko Naoe, Novel facing targets sputtering apparatus with uniform magnetic field and plasma-free substrates, j. of Vacuum 51 4 ( 1998) 687–690. https://doi.org/10.1016/S0042-207X(98)00275-9
7. Sangmo Kim, Kyunghwan Kim, Effect of Magnetic Field Arrangement of Facing Targets Sputtering (FTS) System on Controlling Plasma Confinement, j. of Coatings 10(4) :321( 2020). DOI: 10.3390/coatings10040321.
8. J. Goree, T. E. Sheridan, Magnetic field dependence of sputtering magnetron efficiency, Appl. Phys. Lett. 59 (1991) 1052-1054. https://doi.org/10.1063/1.106342
9. Ali Rahmati, A model for DC magnetron sputtering of bi-component target in Ar ambient: case study of Ti–Cu target, Indian Journal of Physics 87 (2013) 25-31. https://link.springer.com/article/10.1007/s12648-012-0181-4
10. K. Honglertkongsakul, S. Chaiyakun, N. Witit-anun, W. Kongsri, P. Limsuwan, Single Langmuir Probe Measurements in an Unbalanced Magnetron Sputtering System, Procedia Engineering Volume 32 (2011) 962–968. https://www.proceedings.com/content/018/018506webtoc.pdf
11. S. Gopikishan, I. Banerjee, S. K. Mahapatra, Influence of magnetic field on plasma parameters and thin film deposition along axial and radial distances in DC magnetron, (2017). https://doi.org/10.48550/arXiv.1704.06503,arXiv:1704.06503 [physics.plasm-ph]
12. A. Grill, Cold Plasma Materials Fabrication: From Fundamentals to Applications, First Ed Wiley-IEEE Press, 1994. https://ieeexplore.ieee.org/book/5271223
13. Chung P.M., Talbot L., Touryan K.J., Electric probes in stationary and flowing plasmas: theory and application, springer-Verlag New York, 1975. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=6207720
14. Robert L. Merlino, Understanding Langmuir probe current-voltage characteristics, American Journal of Physics 75 12 (2007) 1078-1089. https://doi.org/10.1119/1.2772282
15. C.H. Shon, J.K. Lee, H.J. Lee, Y. Yang,T.H. Chung, Velocity distributions in magnetron sputter, IEEE Transactions on Plasma Science 26 6 (1998) 1635 – 1644. DOI: 10.1109/27.747881
16. Sankar Moni Borah, Arup Ratan Pal, Heremba Bailung, Joyanti Chutia, Effect of E × B electron drift and plasma discharge in dc magnetron sputtering plasma, Chinese Physics B 20 1 014701 (2011). DOI 10.1088/1674-1056/20/1/014701
17. Albert Rauch, Rueben J. Mendelsberg , Jason M. Sanders and André Anders, Plasma potential mapping of high power impulse magnetron sputtering discharges, Journal of Applied Physics 111 8 083302 (2012). https://doi.org/10.1063/1.3700242
18. Sankar Moni, Direct current magnetron glow discharge plasma characteristics study for controlled deposition of titanium nitride thin film Borah, Journal of Materials 2013 2 (2013). http://dx.doi.org/10.1155/2013/852859
19. Z. Ballah, F. Khelfaoui, Numerical modeling of the electrical properties plasma argon in a RF magnetron sputtering and with Einstein’s relation of electron diffusivity Journal of King Saud University – Science 32 (2020) 620–627. https://doi.org/10.1016/j.jksus.2018.09.004
Published
2023-02-22
How to Cite
Hamdon, N. A. (2023). The Effect of Magnetic Field Strength in DC Magnetron. Central Asian Journal of Theoretical and Applied Science, 4(2), 61-67. https://doi.org/10.17605/OSF.IO/MNX6B
Section
Articles