Obtaining Sensitive Materials that Sense Light and Temperature
Abstract
Mechanical treatment (cutting, physical and chemical cleaning, polishing) of semiconductor Si<B>-based material, introduction of Mn(Manganese) atoms through diffusion, formation of nanoclusters of various sizes and thus light and obtaining a sensitive material that senses temperature. Nanoclusters are materials in the transition from atomic properties to bulk material properties. Since it is possible to create new properties by obtaining nanoclusters of different sizes, by alloying Mn(Manganese) atoms to the Si<B>-based material at different temperatures, forming nanoclusters of different sizes, and studying their electrophysical parameters, light and temperature sensors is created. This work aims to calculate the infrared sensitivity of compensated silicon on IKS-21 and Hall effect measurement devices, generate graphic images and analyze them. The Mn atom was exposed to the KDB-3 element by diffusion, and a graph was created to determine its IR sensitivity at the nitrogen temperature of the IKS-21 device [1-7]. To calculate the electrical and physical parameters of the compensated silicon, the results were obtained in Hall effect measurement devices. The results of the experiments show that the number of manganese atoms is influenced by the specific resistance and conductivity of the sample, and that the properties of the infrared ray sensed alloy sample are p-type, ranging from 1.5–102 u.s.m. to 4–104 u.s.m. The sensitivity of the n-type sample was not observed regardless of any value of. The observation of such phenomena in obtained samples depends on the selection of the first samples used for the formation of the nano cluster [8].
Downloads
References
2. Bakhadyrkhanov M.K., Isamov S.B., Iliev Kh. M., and Kamalov Kh.U. Anomalously Long Lifetime of Holes in Silicon with Nanoclusters of Manganese Atoms// Semiconductors, 2015
3. Topvoldiyev, Nodirbek. 2023. «KREMNIY ASOSIDAGI QUYOSH ELEMENTILARI KONSTRUKTSIYASI». Interpretation and researches 1(1).
4. Marius Grundmann. «The Physics of Semiconductors». Switzerland: Springer International Publishing. 3rd ed. 2016
5. Alijanov D.D., Topvoldiyev N.A. (2021). SOLAR TRACKER SYSTEM USING ARDUINO. Theoretical & Applied Science, 249-253.
6. Peter YU Manuel Cardona. «Fundamentals of Semiconductors, Physics and Materials Properties». Spring-Verlag Berlin Heidelberg. 4th ed. 2010.
7. Alijanov D.D., Topvoldiyev N.A. (2022). PHYSICAL AND TECHNICAL FUNDAMENTALS OF PHOTOELECTRIC SOLAR PANELS ENERGY. Theoretical & Applied Science, 501-505
8. Topvoldiyev Nodirbek Abdulhamid o‘g‘li, & Komilov Murodjon Muhtorovich. (2022). Stirling’s Engine. Texas Journal of Multidisciplinary Studies, 9, 95–97.
9. Пул-мл.Ч., Оуэнс Ф. «Нанотехнологии». Учебное пособие. – М.: Техносфера, 2010.
10. Topvoldiyev N.A, Komilov M.M. (2022). DETERMINING THE TIME DEPENDENCE OF THE CURRENT POWER AND STRENGTH OF SOLAR PANELS BASED ON THE EDIBON SCADA DEVICE. Web of Scientist: International Scientific Research Journal, 1902-1906.
11. Topvoldiyev N.A., Komilov M.M. (2022). Stirling's Engine. Texas Journal of Multidisciplinary Studies, 95-97.
12. Abdulhamid o‘g‘li, T. N., Maribjon o’g’li, H. M., & Baxodirjon o’g’li, H. I. (2022). BIPOLYAR TRANZISTORLAR. E Conference Zone, 150–152.
13. Abdulhamid o‘g‘li, T. N. (2022, June). STIRLING ENERGY GENERATOR. In E Conference Zone (pp. 13-16).
14. Мартинес-Дуарт Дж.М., Мартин-Палма Р.Дж., Фчулло-Руеда Ф. «Нанотехнологии для микро- и оптоэлектроники». Учебное пособие. – М.: Техносфера, 2007.
15. Abdulhamid o‘g‘li, T. N. (2022). Stirling Engine and Principle of Operation. Global Scientific Review, 4, 9-13.
16. Muhtorovich, K. M., & Abdulhamid o‘g‘li, T. N. (2022). DETERMINING THE TIME DEPENDENCE OF THE CURRENT POWER AND STRENGTH OF SOLAR PANELS BASED ON THE EDIBON SCADA DEVICE. Web of Scientist: International Scientific Research Journal, 3(5), 1902-1906.
17. Abdulhamid o‘g‘li, T. N., & Muhtorovich, K. M. (2022). Stirling's Engine. Texas Journal of Multidisciplinary Studies, 9, 95-97.
18. Topvoldiyev Nodirbek Abdulhamid o‘g‘li, & Davronov Akmaljon Abdug‘ani oʻgʻli. (2022). Stirling Engine and Principle of Operation. Global Scientific Review, 4, 9–13. Retrieved from http://scienticreview.com/index.php/gsr/article/view/25
19. Topvoldiyev Nodirbek Abdulhamid o‘g‘li, Raxmonov Azizbek Botirjon oʻgʻli, & Musiddinov Otabek Ulugʻbek oʻgʻli. (2022). STIRLING ENERGY GENERATOR. E Conference Zone, 13–16. Retrieved from http://econferencezone.org/index.php/ecz/article/view/1292
20. Abdulhamid o‘g‘li, T. N., Maribjon o’g’li, H. M., & Baxodirjon o’g’li, H. I. (2022). BIPOLYAR TRANZISTORLAR. E Conference Zone, 150–152.
21. Alijanov, D. D., Yo? Lchiev, M. E., Islomov, D. D., Topvoldiyev, N. A. (2022). Preventing accidents and achieving economic efficiency through a multi-functional device in substations with a voltage of 110/35/6 KV. ISJ Theoretical & Applied Science, 12 (116), 1001-1006. Soi: http://s-o-i.org/1.1/TAS-12-116-74 Doi: https://dx.doi.org/10.15863/TAS.2022.12.116.74
22. Abdulhamid o‘g‘li, T. N. & others. (2022b). Stirling Engine and Principle of Operation. Global Scientific Review, 4, 9–13.
23. Abdulhamid o‘g‘li, T. N. & others. (2022a). STIRLING ENERGY GENERATOR. E Conference Zone, 13–16.
24. Topvoldiyev, N. (2023). KREMNIY ASOSIDAGI QUYOSH ELEMENTILARI KONSTRUKTSIYASI. Interpretation and Researches, 1(1).