Nanoparticles Mediated Photo Thermal Therapy, A Review of Therapeutic Applications
Abstract
Nanoparticles-mediated photothermal therapy (PTT) has emerged as a promising approach for various therapeutic applications, particularly in the field of cancer therapy. This review presents an overview of the therapeutic applications of nanoparticles in PTT and discusses their unique properties and capabilities. The selective accumulation of nanoparticles in tumor tissues through active targeting strategies allows for enhanced treatment efficacy while minimizing damage to healthy tissues. Nanoparticles exhibit strong light-absorbing properties in the near-infrared (NIR) region, enabling efficient conversion of light into heat and inducing localized hyperthermia. This localized heat leads to tumor cell death through various mechanisms, including protein denaturation, membrane disruption, and oxidative stress. Additionally, nanoparticles can be engineered to carry therapeutic payloads, enabling combination therapies that synergistically enhance tumor cell killing. Despite the potential of nanoparticles-mediated PTT, several challenges need to be addressed. Tumor heterogeneity, optimal nanoparticle design, biocompatibility, toxicity, treatment monitoring, and clinical translation are among the key areas that require further investigation. Overcoming these challenges will facilitate the successful clinical translation of PTT and its integration into standard cancer treatment protocols. Future directions in nanoparticles-mediated PTT involve refining nanoparticle design, exploring new nanomaterials, and improving treatment monitoring techniques. Combination therapies, personalized treatment approaches, and investigations into applications beyond cancer therapy hold promise for future research.
Downloads
References
2. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. J. C. S. R. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews 41(7), 2740-2779.
3. Duncan, R., & Izzo, L. J. A. d. d. r. (2005). Dendrimer biocompatibility and toxicity. Advanced drug delivery reviews 57(15), 2215-2237.
4. Grigoriev, V., Bonod, N., Wenger, J. r. m., & Stout, B. J. A. p. (2015). Optimizing nanoparticle designs for ideal absorption of light. ACS photonics 2(2), 263-270.
5. Hirsch, L. R., Stafford, R. J., Bankson, J., Sershen, S. R., Rivera, B., Price, R., . . . West, J. L. J. P. o. t. N. A. o. S. (2003a). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences, 100(23), 13549-13554.
6. Hirsch, L. R., Stafford, R. J., Bankson, J., Sershen, S. R., Rivera, B., Price, R., . . . West, J. L. J. P. o. t. N. A. o. S. (2003b). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences 100(23), 13549-13554.
7. Hu, J.-J., Cheng, Y.-J., & Zhang, X.-Z. J. N. (2018). Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale, 10(48), 22657-22672.
8. Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy.
9. Jokerst, J. V., & Gambhir, S. S. J. A. o. c. r. (2011). Molecular imaging with theranostic nanoparticles. Accounts of chemical research 44(10), 1050-1060.
10. Jokerst, J. V., Thangaraj, M., Kempen, P. J., Sinclair, R., & Gambhir, S. S. J. A. n. (2012). Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS nano 6(7), 5920-5930.
11. Korotitsch, W. J., & Nelson-Gray, R. O. J. P. A. (1999). An overview of self-monitoring research in assessment and treatment. Psychological Assessment 11(4), 415.
12. Linsley, C. S., & Wu, B. M. J. T. d. (2017). Recent advances in light-responsive on-demand drug-delivery systems. Therapeutic delivery 8(2), 89-107.
13. Marusyk, A., & Polyak, K. J. B. e. B. A.-R. o. C. (2010). Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta -Reviews on Cancer 1805(1), 105-117.
14. Mokhtari, R. B., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., & Yeger, H. J. A. m. (2017). Combination therapy in combating cancer. ONCAGONIST, 8(23), 38022.
15. O'Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D., & West, J. L. J. C. l. (2004). Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer letters 209(2), 171-176.
16. Salah, D., Moghanm, F. S., Arshad, M., Alanazi, A. A., Latif, S., El-Gammal, M. I., . . . Elsayed, S. J. D. (2021). Polymer-peptide modified gold nanorods to improve cell conjugation and cell labelling for stem cells photoacoustic imaging. Diagnostics, 11(7), 1196.
17. Wang, S., Huang, P., Nie, L., Xing, R., Liu, D., Wang, Z., . . . Lu, G. J. A. m. (2013). Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer‐functionalized gold nanostars. Advanced materials 25(22), 3055-3061.
18. Webster, R. M. J. N. r. D. d. (2016). Combination therapies in oncology. Nature reviews. Drug discovery 15(2), 81.
19. Zhang, P., Meng, J., Li, Y., Yang, C., Hou, Y., Tang, W., . . . Jing, L. J. T. I. (2021). Nanotechnology-enhanced immunotherapy for metastatic cancer. The Innovation 2(4).