CD48 and Tumor Progression: The Critical Immunoregulatory Function
Abstract
CD48, a cell surface glycoprotein belonging to the signaling lymphocytic activation molecule (SLAM) family, has emerged as a potential therapeutic target with significant clinical implications. In the context of cancer immunotherapy, CD48 plays a crucial role in immune evasion mechanisms and the modulation of immune responses. Engagement of CD48 with tumor-associated macrophages (TAMs) can influence their polarization towards an immunosuppressive M2-like phenotype, contributing to tumor progression. Inhibition of CD48-mediated interactions has the potential to enhance anti-tumor immune responses and improve the efficacy of immunotherapeutic approaches, including immune checkpoint blockade and CAR T cell therapy. Combination therapies, patient stratification based on biomarkers, and careful consideration of safety profiles are important aspects to be explored.
Downloads
References
2. Boles, K. S., Stepp, S. E., Bennett, M., Kumar, V., & Mathew, P. A. J. I. r. (2001). 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunological reviews 181(1), 234-249.
3. Boles, N. C., Lin, K. K., Lukov, G. L., Bowman, T. V., Baldridge, M. T., & Goodell, M. A. J. B., The Journal of the American Society of Hematology. (2011). CD48 on hematopoietic progenitors regulates stem cells and suppresses tumor formation. Blood, The Journal of the American Society of Hematology 118(1), 80-87.
4. Bolomini-Vittori, M., Montresor, A., Giagulli, C., Staunton, D., Rossi, B., Martinello, M., . . . Laudanna, C. J. N. i. (2009). Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module. Nature immunology 10(2), 185-194.
5. Cannons, J. L., Tangye, S. G., & Schwartzberg, P. L. J. A. r. o. i. (2011). SLAM family receptors and SAP adaptors in immunity. Annual review of immunology 29, 665-705.
6. Chen, H., Zha, J., Tang, R., & Chen, G. J. I. I. (2023). T-cell immunoglobulin and mucin-domain containing-3 (TIM-3): Solving a key puzzle in autoimmune diseases. International Immunopharmacology 121, 110418.
7. De Bousser, E., Callewaert, N., & Festjens, N. J. C. (2021). T cell engaging immunotherapies, highlighting chimeric antigen receptor (CAR) T cell therapy. Cancers 13(23), 6067.
8. Elias, S., Yamin, R., Golomb, L., Tsukerman, P., Stanietsky-Kaynan, N., Ben-Yehuda, D., & Mandelboim, O. J. B., The Journal of the American Society of Hematology. (2014). Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood, The Journal of the American Society of Hematology 123(10), 1535-1543.
9. Elishmereni, M., Levi-Schaffer, F. J. T. i. j. o. b., & biology, c. (2011). CD48: A co-stimulatory receptor of immunity. The international journal of biochemistry cell biology 43(1), 25-28.
10. Gao, Y., Yang, P., Shen, H., Yu, H., Song, X., Zhang, L., . . . Hao, S. J. N. c. (2015). Small-molecule inhibitors targeting INK4 protein p18INK4C enhance ex vivo expansion of haematopoietic stem cells. Nature communications 6(1), 6328.
11. Hahn, W. C., Burakoff, S. J., & Bierer, B. E. J. J. o. i. (1993). Signal transduction pathways involved in T cell receptor-induced regulation of CD2 avidity for CD58. Journal of immunology 150(7), 2607-2619.
12. He, M., Yu, J., Chen, S., & Mi, H. J. I. J. o. G. M. (2023). A Systematic Immune and Prognostic Analysis of CD48 Interaction with Tumor Microenvironment in Pan-Cancer. International Journal of General Medicine 5255-5269.
13. Huang, J., Wu, Q., Geller, D. A., & Yan, Y. J. J. o. T. M. (2023). Macrophage metabolism, phenotype, function, and therapy in hepatocellular carcinoma (HCC). Journal of Translational Medicine 21(1), 815.
14. Jing, W., Gershan, J. A., Weber, J., Tlomak, D., McOlash, L., Sabatos-Peyton, C., & Johnson, B. D. J. J. f. i. o. c. (2015). Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. Journal for immunotherapy of cancer 3(1), 1-15.
15. McArdel, S. L., Terhorst, C., & Sharpe, A. H. J. C. i. (2016a). Roles of CD48 in regulating immunity and tolerance. Clinical immunology 164, 10-20.
16. McArdel, S. L., Terhorst, C., & Sharpe, A. H. J. C. i. (2016b). Roles of CD48 in regulating immunity and tolerance. Clinical immunology 164, 10-20.
17. McBride, M. A., Patil, T. K., Bohannon, J. K., Hernandez, A., Sherwood, E. R., & Patil, N. K. J. F. i. i. (2021). Immune checkpoints: novel therapeutic targets to attenuate sepsis-induced immunosuppression. Frontiers in immunology 11, 624272.
18. Pan, Y., Yu, Y., Wang, X., & Zhang, T. J. F. i. i. (2020). Tumor-associated macrophages in tumor immunity. Frontiers in immunology 11, 583084.
19. Park, E. J., Jun, H. W., Na, I. H., Lee, H. K., Yun, J., Kim, H. S., . . . Han, S.-B. J. A. o. P. R. (2022). CD48-expressing non-small-cell lung cancer cells are susceptible to natural killer cell–mediated cytotoxicity. Archives of Pharmacal Research 45(1), 1-10.
20. Paul, S., & Lal, G. J. F. i. i. (2017). The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Frontiers in immunology 8, 1124.
21. Veillette, A., & Guo, H. J. C. r. i. o. h. (2013). CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Critical reviews in oncology/hematology 88(1), 168-177.
22. Wei, J. (2006). Construction, expression and characterisation of a human anti-CD48 monoclonal antibody. UNSW Sydney,
23. Wei, Y., Xiao, X., Lao, X.-M., Zheng, L., Kuang, D.-M. J. C., & Sciences, M. L. (2021). Immune landscape and therapeutic strategies: new insights into PD-L1 in tumors. Cellular Molecular Life Sciences 78, 867-887.
24. Xiang, X., Wang, J., Lu, D., Xu, X. J. S. t., & therapy, t. (2021). Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal transduction targeted therapy 6(1), 75.
25. Zhang, H., Dai, Z., Wu, W., Wang, Z., Zhang, N., Zhang, L., . . . Research, C. C. (2021). Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. Journal of Experimental Clinical Cancer Research 40(1), 1-22.
26. Zhou, J., Zhang, S., & Guo, C. J. I. I. (2021). Crosstalk between macrophages and natural killer cells in the tumor microenvironment. International Immunopharmacology 101, 108374.