Machine Learning Implementation in Sentiment Analysis of Covid-19 Pandemic Handling Policies in Indonesia

  • David Hermansyah
  • Budi Santoso Universitas Dr. Soetomo
  • Anggit Wikanningrum Universitas Dr. Soetomo
Keywords: machine learning, sentiment analysis, Covid-19, government policies

Abstract

The behavior of Indonesian society in expressing opinions has shifted towards the use of internet-based social media. The use of social media to voice aspirations also occurred during the emergence of the Covid-19 pandemic in Indonesia, especially in response to the government's policies in handling the outbreak. The purpose of this research is to determine the effectiveness and influence of government policies on the community, one of which is by conducting sentiment analysis on the Twitter social media platform. Previous studies have not specifically analyzed the sentiment of public reactions to government policies in the case of the Covid-19 pandemic or have only discussed the legal aspects of those policies. This research employs a sentiment classification method using machine learning into three categories: positive, neutral, and negative. The analysis is carried out on the occurrence of predefined phrases related to government policies in tweets circulating on social media. The results of this study indicate that public sentiment towards the government's handling of the Covid-19 pandemic tends to be neutral and positive, but the negative sentiment carries a stronger tendency despite its smaller quantity.

Downloads

Download data is not yet available.

References

1. Akhmad Sa’rony, A. P. (2019). “Analisis Sentimen Kebijakan Pemindahan Ibukota Republik Indonesia dengan Menggunakan Algoritme Term-Based Random Sampling dan Metode Klasifikasi Naïve Bayes”. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer .
2. Covid-19, S. (2020). “Peta Sebaran Covid-19. Retrieved from Satgas Penanganan COVID-19”: https://covid19.go.id/
3. DetikHealth, F. A. (2020). “Update Corona Indonesia 10 September: Rekor 3.861 Kasus Baru, Total 207.203”. Retrieved from DetikHealth: https://health.detik.com/berita-detikhealth/d-5167585/update-corona-indonesia-10-september-rekor-3861-kasus-baru-total-207203
4. Fitri, W. (2020). "Implikasi Yuridis Penetapan Status Bencana Nasional Pandemi Corona Virus Disease 2019 (COVID-19) Terhadap Perbuatan Hukum Keperdataan". SUPREMASI HUKUM.
5. K. Sivarajah, U. I. (2019). “Role of big data and social media analytics for business to business sustainability: A participatory web context”. Ind. Mark. Manag.
6. Karunia, A. M. (2020). “LIPI: 39,4 Persen Usaha di Indonesia Terhenti Akibat Pandemi Covid-19”. Retrieved from Kompas.com: https://money.kompas.com/read/2020/05/19/214500926/lipi--39-4-persen-usaha-di-indonesia-terhenti-akibat-pandemi-covid-19
7. Kiruthika, S. (2016). “Sentiment Analysis of Twitter Data”. IJIET .
8. Martin, S. K.-S. (2020). “The pandemic of social media panic travels faster than the COVID-19 outbreak Dengue Tools View project GBD 2013-2015 Study View project”. Journal of Travel Medicine .
9. Pemerintah RI. (2020). “Keputusan Presiden Nomor 12 Tahun 2020 tentang Penetapan Bencana Nonalam Penyebaran Corona Virus Disease 2019 (COVID-19) sebagai Bencana Nasional”.
10. R. S. Luqyana, W. A. (2018). ”Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine”. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer .
11. Yogapreethi, N. (2016). “A Review on Text Mining in Data Mining”. Int. Journal Soft Computing .
Published
2023-12-31
How to Cite
Hermansyah, D., Santoso, B., & Wikanningrum, A. (2023). Machine Learning Implementation in Sentiment Analysis of Covid-19 Pandemic Handling Policies in Indonesia. Central Asian Journal of Theoretical and Applied Science, 4(12), 315-321. Retrieved from https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1435