A Brief Overview of Hydrogen Bonds

  • Zahraa M. Mahdi Department of Pharmaceutical Chemistry, College of Pharmacy, University of Thi-Qar, Thi-Qar, 64001, Iraq
  • Maha D. Azeez Department of Pharmaceutical Chemistry, College of Pharmacy, University of Thi-Qar, Thi-Qar, 64001, Iraq
Keywords: Hydrogen Bond, Interactions, Energy, Resonance-Assisted, Electronegativity

Abstract

This study aims to provide a comprehensive understanding of hydrogen bonds, which are the most significant directional molecular interactions in various chemical systems, ranging from inorganic to biological. The research examines the importance of hydrogen bonds in influencing molecular conformation, assembly, and function, as well as the evolution of related research, which saw a decline in the 1980s but rapidly resumed growth since the 1990s. The methodology employed in this study includes a theoretical and experimental review of various types of hydrogen bonds commonly found in condensed phases, as well as an analysis of interaction energy and covalent contributions in short, strong hydrogen bonds (SSHB). Additionally, the study adopts wave function analysis and the Quantum Theory of Atoms in Molecules (QTAIM) to evaluate hydrogen bond strength. The results indicate that hydrogen bonds exhibit diverse characteristics and are essential in various scientific disciplines, including supramolecular chemistry, biology, and inorganic chemistry. Hydrogen bonds play a critical role in stabilizing protein structures, proton transfer, and molecular self-assembly, and have significant implications in specific chemical reactions, such as the oxidative addition of bonds in complex molecules.

Downloads

Download data is not yet available.

References

Herschlag, D. and Pinney, M. (2018). Hydrogen bonds: simple after all?. Biochemistry, 57(24), 3338-3352.

Desiraju, G. (2010). A bond by any other name. Angewandte Chemie, 50(1), 52-59.

Fayer, M. (2011). Dynamics of water interacting with interfaces, molecules, and ions.. Accounts of Chemical Research, 45(1), 3-14.

Saggu, M., Levinson, N., & Boxer, S. (2011). Direct measurements of electric fields in weak oh···π hydrogen bonds. Journal of the American Chemical Society, 133(43), 17414-17419.

Cleland, W., Frey, P., & Gerlt, J. (1998). The low barrier hydrogen bond in enzymatic catalysis. Journal of Biological Chemistry, 273(40), 25529-25532.

Hooft, R., Sander, C., & Vriend, G. (1996). Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins Structure Function and Bioinformatics, 26(4), 363-376.

Rajagopal, S. and Vishveshwara, S. (2005). Short hydrogen bonds in proteins. Febs Journal, 272(8), 1819-1832.

Mino, G., Barriga, R., & Gutiérrez, G. (2014). Hydrogen bonds and heat diffusion in α-helices: a computational study. The Journal of Physical Chemistry B, 118(34), 10025-10034.

Huo, P., Wang, J., Shao, M., Sun, Y., Ji, S., Zhu, Q., … & Dai, J. (2012). A redox active proton transfer and hydrogen-bonding system of tetrathiafulvalene-dicarboxylic acid and pyridine bases. Physical Chemistry Chemical Physics, 14(47), 16229.

Okada, Y., Sugai, M., & Chiba, K. (2016). Hydrogen-bonding-induced fluorescence: water-soluble and polarity-independent solvatochromic fluorophores. The Journal of Organic Chemistry, 81(22), 10922-10929.

Chaudhary, H. and Hasnain, S. (2016). In-silico analysis. The Professional Medical Journal, 23(02), 217-222.

Hascall, T., Baik, M., Bridgewater, B., Shin, J., Churchill, D., Friesner, R., … & Parkin, G. (2002). A non-classical hydrogen bond in the molybdenum arene complex [η6-c6h5c6h3(ph)oh]mo(pme3)3: evidence that hydrogen bonding facilitates oxidative addition of the o–h bond. Chemical Communications, (22), 2644-2645.

Li, Z., Li, H., Liu, Y., & Tang, H. (2009). Weak interaction between ch3so and hocl: hydrogen bond, chlorine bond and oxygen bond. Chinese Science Bulletin, 54(17), 3014-3022.

G. Pimentel and A. McClellan, The hydrogen bond, Freeman, San Francisco, 1960.

Grabowski, S. J. (2006). Theoretical studies of strong hydrogen bonds. Annual Reports Section "C"(Physical Chemistry), 102, 131-165.‏

Steiner, T. (2002). The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41(1), 48-76.‏

Pauling L. The Nature of the Chemical Bond. Cornell University Press: Ithaca, NY, 1960.

GRABOWSKI, Slawomir J.; SOKALSKI, W. Andrzej. Different types of hydrogen bonds: Correlation analysis of interaction energy components. Journal of physical organic chemistry, 2005, 18.8: 779-784.‏

NOVOA, Juan J.; MOTA, Fernando; D'ORIA, Emiliana. The nature of the C–H··· X intermolecular interactions in molecular crystals. A theoretical perspective. In: Hydrogen Bonding—New Insights. Dordrecht: Springer Netherlands, 2006. p. 193-244.‏

Raymo, F. M., Bartberger, M. D., Houk, K. N. and Stoddart, J. F. (2001) The magnitude of [C–HO] hydrogen bonding in molecular and supramolecular assemblies, J. Am. Chem. Soc., 123, 9264–9267.

E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci and D. J. Nesbitt, Pure Appl. Chem., 2011, 83, 1619-1636.

E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci and D. J. Nesbitt, Pure Appl. Chem., 2011, 83, 1637-1641.

G. R. Desiraju, Angew. Chem. Int. Ed., 2011, 50, 52-59.

FARGHER, Hazel A., et al. C–H⋯ S hydrogen bonding interactions. Chemical Society Reviews, 2022, 51.4: 1454-1469.‏

J. E. Lennard-Jones, Proc. Phys. Soc., 1931, 43, 461-482.

Shi, B., Zhao, W., & Zhang, Q. (2007). Explanation for hydrogen bonds of chitin‐alcohols from lewis acid‐base theories. Journal of Macromolecular Science Part B, 46(5), 1033-1039.

Panigrahi, S. and Desiraju, G. (2007). Strong and weak hydrogen bonds in the protein–ligand interface. Proteins Structure Function and Bioinformatics, 67(1), 128-141.

Chen, J., McAllister, M., Lee, J., & Houk, K. (1998). Short, strong hydrogen bonds in the gas phase and in solution:  theoretical exploration of pka matching and environmental effects on the strengths of hydrogen bonds and their potential roles in enzymatic catalysis.

Cassidy, C., Lin, J., & Frey, P. (1997). A new concept for the mechanism of action of chymotrypsin:  the role of the low-barrier hydrogen bond. Biochemistry, 36(15), 4576-4584. The Journal of Organic Chemistry, 63(14), 4611-4619.

Barich, D., Clawson, J., Stueber, D., Strohmeier, M., Pugmire, R., & Grant, D. (2002). Determination of 13c chemical shift tensors in the presence of hydrogen bonding and 14n quadrupolar coupling:  p-aminosalicylic acid, isoniazid, and pyrazinamide. The Journal of Physical Chemistry A, 106(46), 11375-11379.

Parthasarathi, R., Subramanian, V., & Sathyamurthy, N. (2006). Hydrogen bonding without borders:  an atoms-in-molecules perspective. The Journal of Physical Chemistry A, 110(10), 3349-3351.

Özen, A., Proft, F., Avi̇yente, V., & Geerlings, P. (2006). Interpretation of hydrogen bonding in the weak and strong regions using conceptual dft descriptors. The Journal of Physical Chemistry A, 110(17), 5860-5868.

Kawasaki, T., Takahashi, M., Kiyanagi, R., & Ohhara, T. (2022). Rearrangement of hydrogen bonds in dehydrated raffinose tetrahydrate: a time-of-flight neutron diffraction study. Acta Crystallographica Section C Structural Chemistry, 78(12), 743-748.

Deshmukh, M., Gadre, S., & Bartolotti, L. (2006). Estimation of intramolecular hydrogen bond energy via molecular tailoring approach. The Journal of Physical Chemistry A, 110(45), 12519-12523.

Afonin, A. and Vashchenko, A. (2019). Benchmark calculations of intramolecular hydrogen bond energy based on molecular tailoring and function‐based approaches: developing hybrid approach. International Journal of Quantum Chemistry, 119(21).

Liu, Q., Xiao, K., Abulimiti, B., Xiang, M., Wang, D., An, H., … & Zheng, J. (2022). A dft‐based study of the hydrogen‐bonding interactions between epicatechin and methanol/water. Journal of the Chinese Chemical Society, 70(1),

16-23.

Widelicka, M., Pogorzelec‐Glaser, K., Pietraszko, A., Ławniczak, P., Pankiewicz, R., & Łapiński, A. (2017). Order–disorder phase transition in an anhydrous pyrazole-based proton conductor: the enhancement of electrical transport properties. Physical Chemistry Chemical Physics, 19(37), 25653-25661.

Sarkhel, S. and Desiraju, G. (2003). Nh…o, oh…o, and ch…o hydrogen bonds in protein–ligand complexes: strong and weak interactions in molecular recognition. Proteins Structure Function and Bioinformatics, 54(2), 247-259.

G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1997.

F. Hibbert, J. Emsley, Adv. Phys. Org. Chem. 1990, 26, 255-379.

Iogansen, A. V. Spectrochim. Acta A 1999, 55, 1585–1612.

Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577–2637.

Zhang, Y.; Wang, C.-S. J. Comput. Chem. 2009, 30, 1251–1260.

Estacio, S. G.; Cabral do Couto, P.; Costa Cabral, B. J.; Minas da Piedade, M. E.; Martinho Simoes, J. A. J. Phys. Chem. A 2004, 108, 10834–10843.

Schlund, S.; Schmuck, C.; Engels, B. J. Am. Chem. Soc. 2005, 127, 11115–11124.

Deshmukh, M. M.; Gadre, S. R.; Bartolotti, L. J. J. Phys. Chem. A 2006, 110, 12519–12523.

Luzar, A.; Chandler, D. Phys. ReV. Lett. 1996, 76, 928–931.

Lipsitz, R. S.; Sharma, Y.; Brooks, B. R.; Tjandra, N. J. Am. Chem. Soc. 2002, 124, 10621–10626.

Gu, Y.; Kar, T.; Scheiner, S. J. Am. Chem. Soc. 1999, 121, 9411–9422.

Platts, J. A. Phys. Chem. Chem. Phys. 2000, 2, 973–980.

Platts, J.; Butina, D.; Abraham, M.; Hersey, A. J. Chem. Inf. Comp. Sci. 1999, 39, 835–845.

Grabowski, S. J. Chem. Phys. Lett. 2001, 338, 361–366.

Abraham, M. H.; Ibrahim, A.; Zissimos, A. M. J. Chrom. A 2004, 1037, 29–47.

WENDLER, Katharina, et al. Estimating the hydrogen bond energy. The Journal of Physical Chemistry A, 2010, 114.35: 9529-9536.

H. Margenau and N. R. Kestner, Theory of Intermolecular Forces, 2nd edn, Pergamon Press, New York, 1971.

K. Morokuma and K. Kitaura, in Molecular Interactions, ed. H. Ratajczak and W. J. Orville-Thomas, John Wiley and Sons Ltd, 1980.

K. Kitaura and K. Morokuma, Int. J. Quantum Chem., 1976, 10, 325.

B. Jeziorski and W. Kolos, in Molecular Interactions, ed. H. Ratajczak and W. J. Orville-Thomas, Wiley, Chichester, Vol. 3, 1982.

K. Szalewicz and B. Jeziorski, Mol. Phys., 1979, 38, 191.

S. Rybak, K. Szalewicz, B. Jeziorski and J. Jaszun´ski, J. Chem. Phys., 1987, 86, 5652.

B. Jeziorski, R. Moszyn´ski, S. Rybak and K. Szalewicz, in Many-Body Methods In Quantum Chemistry, ed. U. Kaldor, Sprinter, New York, 1989, p. 65.

W. A. Sokalski, S. Roszak and K. Pecul, Chem. Phys. Lett., 1988, 153, 153.

W. A. Sokalski and S. Roszak, J. Mol. Struct. (THEOCHEM), 1991, 234, 387.

S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.

Kuhn, B.; Mohr, P.; Stahl, M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem. 2010, 53, 2601–2611.

González, D.; Neilands, O.; Rezende, M.C. The solvatochromic behaviour of 2-and 4-pyridiniophenoxides. J. Chem. Soc. Per. Trans. 1999, 2, 713–718.

Lewis, F.D.; Stern, C.L.; Yoon, B.A. Effects of inter-and intramolecular hydrogen bonding upon the structure and photoisomerization of 3-(2-pyridyl) propenamides. J. Am. Chem. Soc. 1992, 114, 3131–3133.

Cui, G.; Lan, Z.; Thiel, W. Intramolecular hydrogen bonding plays a crucial role in the photophysics and photochemistry of the GFP chromophore. J. Am. Chem. Soc. 2012, 134, 1662–1672.

Gilli G, Bullucci F, Ferretti V, Bertolasi V. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. J Am Chem Soc. 1989; 111(3): 1023–1028.

Gilli, P., Bertolasi, V., Ferretti, V., Gilli, G. Covalent nature of the strong homonuclear hydrogenbond-Study of the O-H---O system by crystal-structure correlation methods. J Am Chem Soc. 1994; 116(3): 909–915.

Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. Evidence for resonance-assisted hydrogen bonding. 2. Intercorrelation between crystal structure and spectroscopic parameters in eight intramolecularly hydrogen bonded 1,3-diaryl-1,3-propanedione enols. J Am Chem Soc. 1991; 113(13): 4917–4925.

Bertolasi V, Gilli P, Ferretti V, Gilli G. Resonance-assisted O-H…O hydrogen bonding: its role in the crystalline self‐recognition of β‐diketone enols and its structural and IR characterization. Chem Eur J. 1996; 2(8): 925–934.

GUEVARA-VELA, José Manuel, et al. On the relationship between hydrogen bond strength and the formation energy in resonance-assisted hydrogen bonds. Molecules, 2021, 26.14: 4196.‏

Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. Evidence for resonance-assisted hydrogen bonding. 2. Intercorrelation between crystal structure and spectroscopic parameters in eight intramolecularly hydrogen bonded 1,3-diaryl-1,3-propanedione enols. J. Am. Chem. Soc. 1991, 113, 4917–4925. [CrossRef]

Gilli, G.; Bertolasi, V.; Ferretti, V.; Gilli, P. Resonance-assisted hydrogen bonding. III. Formation of intermolecular hydrogenbonded chains in crystals of β-diketone enols and its relevance to molecular association. Acta Crystallogr. B Struct. Sci. 1993, 49, 564–576.

Gilli, P.; Bertolasi, V.; Pretto, L.; Ferretti, V.; Gilli, G. Covalent versus Electrostatic Nature of the Strong Hydrogen Bond: Discrimination among Single, Double, and Asymmetric Single-Well Hydrogen Bonds by Variable-Temperature X-ray Crystallographic Methods in β-Diketone Enol RAHB Systems. J. Am. Chem. Soc. 2004, 126, 3845–3855.

Grabowski, S.J. π-Electron delocalisation for intramolecular resonance assisted hydrogen bonds. J. Phys. Org. Chem. 2003, 16, 797–802.

Sanz, P.; Mó, O.; Yáñez, M.; Elguero, J. Resonance-Assisted Hydrogen Bonds: A Critical Examination. Structure and Stability of the Enols of β-Diketones and β-Enaminones. J. Phys. Chem. A 2007, 111, 3585–3591.

Lin, X.; Zhang, H.; Jiang, X.; Wu, W.; Mo, Y. The Origin of the Non-Additivity in Resonance-Assisted Hydrogen Bond Systems. J. Phys. Chem. A 2017, 121, 8535–8541.

Chin, J.; Kim, D.C.; Kim, H.-J.; Panosyan, F.B.; Kim, K.M. Chiral Shift Reagent for Amino Acids Based on Resonance-Assisted Hydrogen Bonding. Org. Lett. 2004, 6, 2591–2593.

Zubatyuk, R.I.; Volovenko, Y.M.; Shishkin, O.V. ; Gorb, L.; Leszczynski, J. Aromaticity-Controlled Tautomerism and ResonanceAssisted Hydrogen Bonding in Heterocyclic Enaminone-Iminoenol Systems. J. Org. Chem. 2007, 72, 725–735.

Kim, H.; Nguyen, Y.; Yen, C.P.-H.; Chagal, L.; Lough, A.J.; Kim, B.M.; Chin, J. Stereospecific Synthesis of C2 Symmetric Diamines from the Mother Diamine by Resonance-Assisted Hydrogen-Bond Directed Diaza-Cope Rearrangement. J. Am. Chem. Soc. 2008, 130, 12184–12191.

Markovi´c, R.; Shirazi, A.; Džambaski, Z.; Baranac, M.; Mini´c, D. Configurational isomerization of push-pull thiazolidinone derivatives controlled by intermolecular and intramolecular RAHB: 1 H NMR dynamic investigation of concentration and temperature effects. J. Phys. Org. Chem. 2004, 17, 118–123.

Draˇcínský, M.; Cechová, L.; Hodgkinson, P.; Procházková, E.; Janeba, Z. Resonance-assisted stabilisation of hydrogen bonds ˇ probed by NMR spectroscopy and path integral molecular dynamics. Chem. Commun. 2015, 51, 13986–13989.

Jabło ´nski, M. A Critical Overview of Current Theoretical Methods of Estimating the Energy of Intramolecular Interactions. Molecules 2020, 25, 5512.

Jabło ´nski, M.; Kaczmarek, A.; Sadlej, A.J. Estimates of the Energy of Intramolecular Hydrogen Bonds. J. Phys. Chem. A 2006, 110, 10890–10898.

Rusinska-Roszak, D. Intramolecular O–H···O=C Hydrogen Bond Energy via the Molecular Tailoring Approach to RAHB Structures. J. Phys. Chem. A 2015, 119, 3674–3687.

Grabowski, S. An estimation of strength of intramolecular hydrogen bonds—Ab initio and AIM studies. J. Mol. Struct. 2001, 562, 137–143.

Fuster, F.; Grabowski, S.J. Intramolecular Hydrogen Bonds: The QTAIM and ELF Characteristics. J. Phys. Chem. A 2011, 115, 10078–10086.

Blanco, M.A.; Martín Pendás, A.; Francisco, E. Interacting Quantum Atoms: A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules. J. Chem. Theory Comput. 2005, 1, 1096–1109.

Francisco, E.; Martín Pendás, A.; Blanco, M.A. A Molecular Energy Decomposition Scheme for Atoms in Molecules. J. Chem. Theory Comput. 2005, 2, 90–102.

von Hopffgarten, M.; Frenking, G. Energy decomposition analysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 2, 43–62.

Tognetti, V.; Joubert, L. On the physical role of exchange in the formation of an intramolecular bond path between two electronegative atoms. J. Chem. Phys. 2013, 138, 024102.

Bartashevich, E.V.; Martín Pendás, Á.; Tsirelson, V.G. An anatomy of intramolecular atomic interactions in halogen-substituted trinitromethanes. Phys. Chem. Chem. Phys. 2014, 16, 16780–16789.

Yahia-Ouahmed, M.; Tognetti, V.; Joubert, L. Halogen–halogen interactions in perhalogenated ethanes: An interacting quantum atoms study. Comput. Theor. Chem. 2015, 1053, 254–262.

Yahia-Ouahmed, M.; Tognetti, V.; Joubert, L. Intramolecular halogen bonding: An interacting quantum atoms study. Theor. Chem. Acc. 2016, 135, 45.

Thacker, J.C.R.; Popelier, P.L.A. Fluorine Gauche Effect Explained by Electrostatic Polarization Instead of Hyperconjugation: An Interacting Quantum Atoms (IQA) and Relative Energy Gradient (REG) Study. J. Phys. Chem. A 2018, 122, 1439–1450.

Ebrahimi, S.; Dabbagh, H.A.; Eskandari, K. Nature of intramolecular interactions of vitamin C in view of interacting quantum atoms: The role of hydrogen bond cooperativity on geometry. Phys. Chem. Chem. Phys. 2016, 18, 18278–18288.

Guevara-Vela, J.M.; Romero-Montalvo, E.; Costales, A.; Martín Pendás, Á.; Rocha-Rinza, T. The nature of resonance-assisted hydrogen bonds: A quantum chemical topology perspective. Phys. Chem. Chem. Phys. 2016, 18, 26383–26390.

Romero-Montalvo, E.; Guevara-Vela, J.M.; Costales, A.; Martín Pendás, Á.; Rocha-Rinza, T. Cooperative and anticooperative effects in resonance assisted hydrogen bonds in merged structures of malondialdehyde. Phys. Chem. Chem. Phys. 2017, 19, 97–107.

Guevara-Vela, J.M.; Romero-Montalvo, E.; del Río Lima, A.; Martín Pendás, Á.; Hernández-Rodríguez, M.; Rocha Rinza, T. Hydrogen-Bond Weakening through π Systems: Resonance-Impaired Hydrogen Bonds (RIHB). Chem. Eur. J. 2017, 23, 16605–16611.

Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Oxford University Press: Oxford, UK, 1995.

Grabowski, S.J.; Casanova, D.; Formoso, E.; Ugalde, J.M. Tetravalent Oxygen and Sulphur Centres Mediated by Carborane Superacid: Theoretical Analysis. ChemPhysChem 2019, 20, 2443–2450.

Radoske, T.; Kloditz, R.; Fichter, S.; März, J.; Kaden, P.; Patzschke, M.; Schmidt, M.; Stumpf, T.; Walter, O.; Ikeda-Ohno, A. Systematic comparison of the structure of homoleptic tetradentate N2O2-type Schiff base complexes of tetravalent f-elements (M(iv) = Ce, Th, U, Np, and Pu) in solid state and in solution. Dalton Trans. 2020, 49, 17559–17570.

Marana, N.L.; Casassa, S.M.; Sambrano, J.R. Adsorption of NH3 with Different Coverages on Single-Walled ZnO Nanotube: DFT and QTAIM Study. J. Phys. Chem. C 2017, 121, 8109–8119.

Malˇcek, M.; Buˇcinský, L.; Teixeira, F.; Cordeiro, M.N.D.S. Detection of simple inorganic and organic molecules over Cu-decorated circumcoronene: A combined DFT and QTAIM study. Phys. Chem. Chem. Phys. 2018, 20, 16021–16032.

Ohno, T.; Kubicki, J.D. Adsorption of Organic Acids and Phosphate to an Iron (Oxyhydr)oxide Mineral: A Combined Experimental and Density Functional Theory Study. J. Phys. Chem. A 2020, 124, 3249–3260.

Martín Pendás, Á.; Guevara-Vela, J.M.; Crespo, D.M.; Costales, A.; Francisco, E. An unexpected bridge between chemical bonding indicators and electrical conductivity through the localization tensor. Phys. Chem. Chem. Phys. 2017, 19, 1790–1797.

Astakhov, A.A.; Tsirelson, V.G. Spatially resolved characterization of electron localization and delocalization in molecules: Extending the Kohn-Resta approach. Int. J. Quantum Chem. 2018, 118, e25600.

Gil-Guerrero, S.; Ramos-Berdullas, N.; Martín Pendás, Á.; Francisco, E.; Mandado, M. Anti-ohmic single molecule electron transport: Is it feasible? Nanoscale Adv. 2019, 1, 1901–1913.

Teixeira, F.; Mosquera, R.; Melo, A.; Freire, C.; Cordeiro, M.N.D.S. Driving Forces in the Sharpless Epoxidation Reaction: A Coupled AIMD/QTAIM Study. Inorg. Chem. 2017, 56, 2124–2134.

Hooper, T.N.; Garçon, M.; White, A.J.P.; Crimmin, M.R. Room temperature catalytic carbon–hydrogen bond alumination of unactivated arenes: Mechanism and selectivity. Chem. Sci. 2018, 9, 5435–5440.

Escofet, I.; Armengol-Relats, H.; Bruss, H.; Besora, M.; Echavarren, A.M. On the Structure of Intermediates in Enyne Gold(I)- Catalyzed Cyclizations: Formation of trans-Fused Bicyclo[5.1.0]octanes as a Case Study. Chem. Eur. J. 2020, 26, 15738–15745.

Martín Pendás, A.; Casals-Sainz, J.L.; Francisco, E. On Electrostatics, Covalency, and Chemical Dashes: Physical Interactions versus Chemical Bonds. Chem. Eur. J. 2018, 25, 309–314.

Zhengjun Fang, Xinhua Zhang, Feng Wu, Baoyu Huang, Chak-tang Au, Bing Yi. Effect of Substituent Groups on the Strength of Intramolecular Hydrogen Bonds in 2,4-Dihydroxybenzophenone UV Absorbers. 2023.

Korey M Reid, Humanath Poudel, D. Leitner. Dynamics of Hydrogen Bonds between Water and Intrinsically Disordered and Structured Regions of Proteins. 2023.

KARAS, Lucas J., et al. Hydrogen bond design principles. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10.6: e1477.‏

Donohue J. The hydrogen bond in organic crystals. J Phys Chem A. 1952, 56(4): 502–510.

Etter MC. A new role for the hydrogen-bond acceptors in influencing packing patterns of carboxylic acids and amids. J Am Chem Soc. 1982; 104(4): 1095–1096.

Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res. 1990; 23(4): 120–126.

Gerlt JA, Gassman PG. An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: Importance of late transition states in concerted mechanisms. J Am Chem Soc. 1993;115(24): 11552–11568.

Gerlt JA, Gassman PG. Understanding the rates of certain enzyme-catalyzed reactions: Proton abstraction from carbon acids, acyl transfer reactions, and displacement reactions of phosphodiesters. Biochemistry. 1993; 32(45): 11934–11952.

Cleland WW, Kreevoy MM. Low-Barrier Hydrogen Bonds and Enzyme Catalysis. Science. 1994;264(5167): 1887–1890.

Frey PA, Witt SA, Tobin JB. A low-barrier hydrogen bond in the catalytic triad of serine protease. Science. 1994; 264(5167): 1927–1930.

Graham JD, Buytendyk AM, lubspa D, Bowen KH, Collins KD. Strong, low-barrier hydrogen bonds may be available to enzymes. Biochemistry. 2014; 53(2): 344–349.

Perrin CL. Are short, low-barrier hydrogen bonds unusually strong? Acc Chem Res. 2010;43(12): 1550–1557.

Guthrie JP. Short strong hydrogen bonds: Can they explain enzyme catalysis? Chem Biol. 1996;3(3): 163–170.

Perrin CL, Nielson JB. Strong hydrogen bonds in chemistry and biology. Annu Rev Phys Chem. 1997; 48: 511–544

Kaili Yap, Kristin D Krantzman, R. Lavrich. Inductive Effects on Intramolecular Hydrogen Bond Strength: An Investigation of the Effect of an Electron-Withdrawing CF3 Group Adjacent to an Alcohol Hydrogen Bond Donor. 2023, pp. 7892-7897.

Xuhai Zhu, Cong Zhang, Haixia Ma, Fang Lu. Stereo-Recognition of Hydrogen Bond and Its Implications for Lignin Biomimetic Synthesis. 2022

F. H. Allen, W. D. S. Motherwell, P. R. Raithby, G. P. Shields, R. Taylor. New J. Chem. 1999, 23, 25-34.

C. Bilton, F. H. Allen, G. P. Shields, J. A. K. Howard. Acta Crystal logr. Sect. B 2000, 56, 849-856.

Jencks WP. Binding energy, specificity, and enzymic catalysis: The circe effect. Ad Enzymol. 1975; 43, 219-410.

Fierke CA, Jencks WP. Two functional domains of coenzyme a activate catalysis by coenzyme a transferase. pantetheine and adenosine 3'-phosphate 5'-diphosphate. J Biol Chem. 1986; 261(11): 7603-7606.

Shan SO, Loh S, Herschlag D. Energetic effects of multiple hydrogen bonds. Implications for enzyme catalysis. J Am Chem Soc. 1996; 118(24): 5515–5518.

Shokri A, Schmidt J, Wang XB, Kass SR. Hydrogen bonded arrays: the power of multiple hydrogen bonds. J Am Chem Soc. 2012; 134(4): 2094–2099.

Shokri A, Wang Y, O’Doherty GA, Wang XB, Kass SR. Hydrogen-bond networks: strengths of different types of hydrogen bonds and an alternative to the low barrier hydrogen-bond proposal. J Am Chem Soc. 2013; 135(47): 17919–17924.

Dominelli-Whiteley N, Brown JJ, Muchowska KB, Mati IK, Adam C, Hubbard TA, Elmi A, Brown AJ, Bell IAW, Cockroft SL. Short-range cooperativity in hydrogen-bond chains. Angew Chem Int Ed. 2017; 56(26): 7658-7662.

Kato Y, Conn MM, Rebek J Jr. Hydrogen bonding in water using synthetic receptors. Proc Natl Acad Sci U.S.A. 1995; 92(4): 1208-1212.

Jeong KS, Rebek J Jr. Molecular recognition: hydrogen bonding and aromatic stacking converge to bind cytosine derivatives. J Am Chem Soc. 1988; 110(10): 3327-3328.

Huang C-Y, Cabell LA, Anslyn EV. Molecular recognition of cyclitols by neutral polyaza-hydrogen bonding receptors: The strength and influence of intramolecular hydrogen bonds between vicinal alcohols. J Am Chem Soc. 1994; 116(7): 2778-2792.

Zimmerman SC, VanZyl CM, Hamilton GS. Rigid molecular tweezers: Preorganized hosts for electron donor-acceptor complexation in organic solvents. J Am Chem Soc. 1989; 111(4): 1373 1381.
Published
2024-07-28
How to Cite
Zahraa M. Mahdi, & Maha D. Azeez. (2024). A Brief Overview of Hydrogen Bonds. Central Asian Journal of Theoretical and Applied Science, 5(4), 383-399. Retrieved from https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1490
Section
Articles