Designing of Sr-doped ZnO Nanoparticles onto FTO Glass for Photovoltaic Application

  • Muhammad Mehran Department of physics, University of Agriculture Faisalabad
  • Umar Saeed Department of physics, University of Agriculture Faisalabad
  • Mian Waqar Khalid University of Agriculture FSD
  • Muhammad Waqas Haider Department of physics, University of Agriculture Faisalabad
  • Rana Shehram Ali К University of Okara department of physics
  • Shoaib Ajmal Department of Physics, COMSATS University Islamabad, Lahore campus
  • Mian Saad Bin Munim School of Electrical Engineering, The University of Faisalabad
  • Sadaf Shamshad Department of physics, University of Agriculture Faisalabad
  • Sarfaraz Iqbal Department of physics, University of Agriculture Faisalabad
  • Muhammad Yaqoob Raza Department of physics, University of Agriculture Faisalabad
Keywords: -

Abstract

ZnO nanoparticles are regularly studied for optoelectronic devices. By doping, the structural, optical, electrical and magnetic characteristics of the materials are changed. Some nanoparticles, e.g. Al, Ga, Co doped with ZnO have been extensively used. Even so, few Sr-doped ZnO nanoparticles have been reported so far. In the first part of this work, Sr-doped Zinc Oxides nanoparticles have been synthesized by sol gel process. In the next part of this project, the dye-sensitized solar cells (DSSCs) have been fabricated. They have been analyzed with X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible Spectrophotometry respectively, for their structural and optical properties. The functional groups and chemical bonding of ZnO have been substituted by Sr ions by Fourier transform infrared. The particles of varying sizes and shapes were seen in the micrographs. The measurements of photoluminescence indicate a change of 380 to 384 nm for doped and co-doped samples at close-band rims of UV emissions. To decrease the inherent defects in the ZnO structure, the Zn replaced by Sr ions. This has also been observed that there is a saturation benefit of the Sr-doping concentration in ZnO nanoparticles for our primed solar system regardless of the marginally soluble nature of strontium in ethanol. Undoped and Sr2+ doped DSSCs have been used for generating ZnO-based photographic anodes. The charge characteristics of prepared DSSCs have been used in electrochemical impedance spectroscopic experiments.

Downloads

Download data is not yet available.

References

1. Ahmadi, A. and M. Noei. 2014. The alkali and alkaline earth metal doped ZnO nanotubes : DFT studies. Physica B: J. Condens. Matter Phys., 432: 105–110. Elsevier.
2. Alaria, J., P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj and N. Brihi. 2005. No ferromagnetism in Mn doped ZnO semiconductors 415: 337–341.
3. Amornpitoksuk, P., S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit and J. Baltrusaitis. 2012. Synthesis , characterization , photocatalytic and antibacterial activities of Ag-doped ZnO powders modi fi ed with a diblock copolymer. Powder Technol., 219: 158–164. Elsevier B.V.
4. Anandan, S. 2007. Recent improvements and arising challenges in dye-sensitized solar cells. Sol. Energy Mater Sol, 91(9): 843–846.
5. Ba-abbad, M. M., A. Amir, H. Kadhum, A. Bakar and M. S. Takriff. 2013. Chemosphere Visible light photocatalytic activity of Fe 3 + -doped ZnO nanoparticle prepared via sol – gel technique. CHEMO,.
6. Baek, W., M. Choi, T. Yoon, H. H. Lee, Y. Kim, W. Baek, M. Choi, T. Yoon, H. H. Lee and Y. Kim. 2010. Use of fluorine-doped tin oxide instead of indium tin oxide in highly efficient air-fabricated inverted polymer solar cells Use of fluorine-doped tin oxide instead of indium tin oxide in highly efficient air-fabricated inverted polymer solar cells 133506: 10–13.
7. Bainbridge, W. S. 2002. Public attitudes toward nanotechnology ∗ 561–570.
8. Bamford, D. H. (n.d.) Virus structures : Those magnificent molecular machines 558–561.
9. Bandyopadhyay, P., A. Dey, R. Basu, S. Das and P. Nandy. 2014. SC. Curr Appl Phys. Elsevier Ltd.
10. Baskar, G. and S. Soumiya. 2016. Production of biodiesel from castor oil using iron ( II ) doped zinc oxide nanocatalyst. Renewable Energy, 1–7. Elsevier Ltd.
11. Bauer, C., G. Boschloo, E. Mukhtar and A. Hagfeldt. 2001. Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured Zno. J. Phys. Chem. B, 105(24): 5585–5588.
12. Bawendi, M. G. and L. Steigerwald. 1990. The Quantum Mechanics of Larger Semiconductor Clusters (" Quantum Dots ") (4): 477–496.
13. Baxter, J. B., A. M. Walker, K. Van Ommering and E. S. Aydil. 2006. Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nano. tech., 17(11).
14. Beverley, B. 1987. Observations on rearing karocolens pittospori (coleoptera: Curculionidae: Molytinae). N Z Entomol., 9(1): 34–37.
15. Bharadwaj, S. S., B. W. Shivaraj, H. N. N. Murthy and M. Krishna. 2018. ScienceDirect Synthesis and Characterization of Copper Doped Zinc Oxide Thin Films for CO Gas Sensing. Mater. Today., 5(10): 20904–20911. Elsevier Ltd.
16. Bousslama, W., H. Elhouichet and M. Férid. 2017. Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik - light and electrons. Elsevier GmbH.
17. Brayner, R., R. Ferrari-iliou, N. Brivois, S. Djediat, M. F. Benedetti, F. Fie, P. Cedex and L. De Ge. (n.d.) Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium 2–6.
18. Cai, K. F., X. R. He and L. C. Zhang. 2008. Fabrication , properties and sintering of ZnO nanopowder 62: 1223–1225.
19. Chen, H., J. Ding and S. Ma. 2010. Structural and optical properties of ZnO : Mg thin films grown under different oxygen partial pressures. Physica E Low Dimens. Syst. Nanostruct. 42(5): 1487–1491. Elsevier.
20. Chitra, M., K. Uthayarani, N. Rajasekaran and E. K. Girija. 2013. Preparation and characterisation of Al doped ZnO nanopowders. Phy. Procd., 49: 177–182. Elsevier B.V.
21. Ciciliati, M. A., M. F. Silva, D. M. Fernandes, M. A. C. De Melo, A. Adelina, W. Hechenleitner and E. A. G. Pineda. 2015. Fe-doped ZnO nanoparticles : Synthesis by a modi fi ed sol – gel method and characterization 159: 84–86.
22. D’Souza, L. P., R. Shwetharani, V. Amoli, C. A. N. Fernando, A. K. Sinha and R. G. Balakrishna. 2016. Photoexcitation of neodymium doped TiO2 for improved performance in dye-sensitized solar cells. Mater. Des, 104: 346–354. Elsevier B.V.
23. Dong, S., K. Xu, J. Liu and H. Cui. 2011. Photocatalytic performance of ZnO : Fe array films under sunlight irradiation. Physica B: J. Phys. Condens. Matter., 406(19): 3609–3612. Elsevier.
24. Drexler, E. 2007. “Nanoethics”? What’s New? (February): 22–25.
25. Editor, G., S. Pearton, S. Richeter, L. Raehm, B. L. Allen, M. B. Keddie and A. Star. 2010. This paper is published as part of a Nanoscale themed issue on doped nanostructures.
26. Forever, L. and M. Lundstrom. 2013. Moore ’ s Law Forever  210.
27. Foster, H. A., I. B. Ditta and S. Varghese. 2011. Photocatalytic disinfection using titanium dioxide : spectrum and mechanism of antimicrobial activity 1847–1868.
28. Fu, M., Y. Li, P. Lu, J. Liu and F. Dong. 2011. Applied Surface Science Sol – gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 258(4): 1587–1591. Elsevier B.V.
29. GaigeZheng. 2004. Nanoscience and nanotechnologies : opportunities and uncertainties.
30. Garcés, F. A., N. Budini, R. R. Koropecki and R. D. Arce. 2015. Structural Analysis of ZnO (: Al , Mg ) Thin Films by X-ray Diffraction. Procedia Materials Science, 8: 551–560. Elsevier B.V.
31. George, S., Œ. S. Pokhrel, Œ. T. Xia, Œ. B. Gilbert, Ќ. Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Ma and E. Nel. 2010. Use of a Rapid Cytotoxicity Screening Approach To Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping 4(1): 15–29.
32. Gherab, K., C. H. Voon, U. Hashim, M. Ameri and A. Bouhemadou. 2017. Aluminium nanoparticles size effect on the optical and structural properties of. Results Phys.,.
33. Giovannelli, F., A. N. Ndimba, P. Diaz-chao, M. Motelica-heino, P. I. Raynal, C. Autret and F. Delorme. 2014. Synthesis of Al doped ZnO nanoparticles by aqueous coprecipitation. Powder Technol., 262: 203–208. Elsevier B.V.
34. Giri, P. and P. Chakrabarti. 2016. Superlattices and Microstructures Effect of Mg doping in ZnO buffer layer on ZnO thin fi lm devices for electronic applications. Superlattices Microstruct., 93: 248–260. Elsevier Ltd.
35. Goel, S., N. Sinha, H. Yadav, A. J. Joseph and B. Kumar. 2017. Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells. Physica E: Physica E Low Dimens. Syst. Nanostruct., 91: 72–81. Elsevier B.V.
36. Greene, L. E., B. D. Yuhas, M. Law, D. Zitoun and P. Yang. 2006. Solution-grown zinc oxide nanowires. Inorg. Chem. 45(19): 7535–7543.
37. Gregg, B. A. 2017. Coulomb forces in excitonic solar cells. Organic Photovoltaics: Mechanisms, Materials, and Devices, 139–160.
38. Guerra, Y., R. Milani, D. M. Oliveira and F. R. De Souza. 2019. Influence of Ni and Sr on the structural , morphological and optical properties of ZnO synthesized by sol gel 98.
39. Helander, M. G., M. T. Greiner, Z. B. Wang, W. M. Tang, Z. H. Lu, M. G. Helander, M. T. Greiner, Z. B. Wang and W. M. Tang. 2014. Work function of fluorine doped tin oxide 011019(2011): 25–29.
40. Huang, L., L. Cheng, S. Pan, Y. He, C. Tian, J. Yu, L. Cheng, S. Pan, Y. He, C. Tian, J. Yu and H. Zhou. 2020. Jo ur of.
41. Ignatovich, F. V and L. Novotny. 2006. Real-Time and Background-Free Detection of Nanoscale Particles 013901(January): 1-4.
42. Jayabharathi, J., C. Karunakaran, V. Kalaiarasi and P. Ramanathan. 2014. Journal of Photochemistry and Photobiology A : Chemistry Nano ZnO , Cu-doped ZnO , and Ag-doped ZnO assisted generation of light from imidazole. ‘J. Photochem. Photobiol. A’, 295: 1–10. Elsevier B.V.
43. Jayasimhadri, M., K. Jang, H. S. Lee, B. Chen, S. Yi, M. Jayasimhadri, K. Jang, S. Lee, B. Chen and S. Yi. 2009. White light generation from Dy3 + -doped ZnO – B2O3 – P2O5 glasses 013105.
44. Jeevanandam, J., A. Barhoum, Y. S. Chan, A. Dufresne and M. K. Danquah. (n.d.) Review on nanoparticles and nanostructured materials : history , sources , toxicity and regulations :1050–1074.
45. Jongnavakit, P., P. Amornpitoksuk, S. Suwanboon and N. Ndiege. 2012. Applied Surface Science Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol – gel method. Appl. Surf. Sci. 258(20): 8192–8198. Elsevier B.V.
46. Kamat, P. V. 2008. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. 112(48): 18737–18753.
47. Kawashima, T., H. Matsui and N. Tanabe. 2003. New transparent conductive films : FTO coated ITO 445(03): 241–244.
48. Khan, R. N., N. Ali, S. Riaz and S. Naseem. 2015. Effect of calcination on properties of cobalt doped ZnO nanoparticles. Materials Today: Proceedings, Vol. 2. Elsevier Ltd.
49. Khanafer, K. and K. Vafai. (n.d.) Applications of Nanomaterials in Solar Energy and Desalination Sectors. Adv. Heat Transf., 1st ed., 45. Copyright © 2013 Elsevier Inc. All rights reserved.
50. Kinosita, K. and K. Adachi. 2004. R Otation of F 1 -ATP ASE : How an ATP-Driven Molecular Machine May Work.
51. Kolodziejczak-Radzimska, A. and T. Jesionowski. 2014. Zinc oxide-from synthesis to application: A review. Mater. Lett, 7(4): 2833–2881.
52. Kong, F. T., S. Y. Dai and K. J. Wang. 2007. Review of recent progress in dye-sensitized solar cells. Advances in OptoElectronics, 2007.
53. Kong, L., Y. Bao, W. Guo, L. Cheng, J. Du, R. Liu, Y. Wang, X. Fan and C. Tao. 2016. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells. Appl. Surf. Sci 363: 323–327. Elsevier B.V.
54. Le, T. H., A. T. Bui and T. K. Le. 2014. The effect of Fe doping on the suppression of photocatalytic activity of ZnO nanopowder for the application in sunscreens. Powder Technology, 268: 173–176. Elsevier B.V.
55. Lee, C. P., C. T. Li, M. S. Fan, S. R. Li, Y. J. Huang, L. Y. Chang, C. M. Tseng, S. S. Sun, J. J. Lin and K. C. Ho. 2016. Microemulsion-assisted Zinc Oxide Synthesis: Morphology Control and Its Applications in Photoanodes of Dye-Sensitized Solar Cells. Electrochimica Acta, 210: 483–491. Elsevier Ltd.
56. Li, Q., S. Mahendra, D. Y. Lyon, L. Brunet, M. V Liga, D. Li and P. J. J. Alvarez. 2008. Antimicrobial nanomaterials for water disinfection and microbial control : Potential applications and implications. Water Research, 42(18): 4591–4602. Elsevier Ltd.
57. Lieber, C. M. 2003. N anoscale Science and Technology : Building a Big Small Things: 486–491.
58. Lim, S. H., Z. Luo and Z. Shen. 2010. Plasma-Assisted Synthesis of Carbon Nanotubes Plasma-Assisted Synthesis of Carbon Nanotubes.
59. Liu, Y., J. Yang, Q. Guan, L. Yang and Y. Zhang. 2009. Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol – gel method 486: 835–838.
60. Liu, Z., Y. Li, C. Liu, J. Ya, W. Zhao, L. E, D. Zhao and L. An. 2011. Performance of ZnO dye-sensitized solar cells with various nanostructures as anodes. Solid State Sciences, 13(6): 1354–1359.
61. Louiza, A., H. Saliha, H. Sofiane, G. Kamel and G. Lakhder. 2012. Structural and luminescence properties of pure and Al-doped ZnO nanopowders. Mater. Sci. Eng. B, 177(11): 902–907. Elsevier B.V.
62. Maldonado, F. and A. Stashans. 2010. Journal of Physics and Chemistry of Solids Al-doped ZnO : Electronic , electrical and structural properties. J Phys Chem Solids, 71(5): 784–787. Elsevier.
63. Mammen, M., S. Choi and G. M. Whitesides. (n.d.) Polyvalent Interactions in Biological Systems : Implications for Design and Use of Multivalent Ligands and Inhibitors **.
64. Manuscript, A. 2013. J. Mater. Chem. B (207890).
65. Marsh, K. N., S. Pang and M. P. Staiger. 2009. Ionic Liquids and Their Interaction with Cellulose 6712–6728.
66. Moontragoon, P., S. Pinitsoontorn and P. Thongbai. 2013. Microelectronic Engineering Mn-doped ZnO nanoparticles : Preparation , characterization , and calculation of electronic and magnetic properties. Microelectron Eng. (February): 1–5.
67. Mulkens, J., J. Mcclay, B. Tirri, M. Brunotte, B. Mecking, H. Jasper and C. Zeiss. (n.d.) Optical lithography solutions for sub-65 nm semiconductor devices . 5040(2003): 753–762.
68. Naik, E. I., H. S. B. Naik, R. Viswanath, B. R. Kirthan and M. C. Prabhakara. 2020. Effect of zirconium doping on the structural , optical , electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method. Chem. Data Collect. 29: 100505. Elsevier B.V.
69. Nair, M. G., M. Nirmala, K. Rekha and A. Anukaliani. 2011. Structural , optical , photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65(12): 1797–1800. Elsevier B.V.
70. Oves, M., M. Arshad, M. S. Khan, A. S. Ahmed, A. Azam and I. M. I. Ismail. 2015. Anti-microbial activity of cobalt doped zinc oxide nanoparticles : Targeting water borne bacteria. J. Saudi Chem. Soc. 19(5): 581–588. King Saud University.
71. Paul, D. R. and L. M. Robeson. 2008. Polymer nanotechnology : Nanocomposites. Polymers with aligned carbon nanotubes: Active composite materials, 49(15): 3187–3204. Elsevier Ltd.
72. Phoenix, C. and E. Drexler. (n.d.) Safe exponential manufacturing 869.
73. Pradeev, K., K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z. Z. Chowdhury, M. Rafie, B. Johan, F. A. Aziz, R. F. Rafique, R. T. Selvi and R. Rathina. 2018. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Res. Lett..
74. Publishing, P., O. R. Text, A. G. Morachevskii and I. N. Beloglazov. 2006. REVIEWS Translated under the title Nanotekhnologiya 79(7): 1213–1214.
75. Qureshi, M. T. 2018. Structural and Optical Properties of Pure and Copper Doped Zinc. Results Phys.,.
76. Raj, K. P., K. Sadaiyandi, A. Kennedy and R. Thamizselvi. 2016. Structural , optical , photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater. Chem. Phys., 183: 24–36. Elsevier B.V.
77. Rama Krishna, C. and M. Kang. 2017. Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 692: 67–76. Elsevier Ltd.
78. Rao, K. S. and T. Vanaja. 2015. Influence of Transition Metal ( Cu , Al ) ions Doping on Structural and Optical properties of ZnO Nanopowders 2: 3743–3749.
79. Rao, P. R., G. M. Krishna, M. G. Brik, Y. Gandhi and N. Veeraiah. 2011. Fluorescence features of Sm 3 + ions in Na 2 SO 4 – MO – P 2 O 5 glass system — Influence of modifier oxide. J. Lumin. 131(2): 212–217. Elsevier.
80. Rekha, K., M. Nirmala, M. G. Nair and A. Anukaliani. 2010. Structural , optical , photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B: J. Phys. Condens. Matter. 405(15): 3180–3185. Elsevier.
81. Rouchdi, M., E. Salmani, B. Fares, N. Hassanain and A. Mzerd. 2017. Results in Physics Synthesis and characteristics of Mg doped ZnO thin films : Experimental and ab-initio study. Results Phys., (January): 1–8.
82. Roy, A., S. Maitra, S. Ghosh and S. Chakrabarti. 2016. Sonochemically synthesized iron-doped zinc oxide nanoparticles : In fl uence of precursor composition on characteristics. Mater. Res. Bull. 74: 414–420. Elsevier Ltd.
83. Saa, A., R. Yousefi, A. K. Zak and M. R. Mahmoudiand. 2015. Author ’ s Accepted Manuscript. Physica E: Physica E Low Dimens. Syst. Nanostruct,. Elsevier.
84. Search, H., C. Journals, A. Contact, M. Iopscience and I. P. Address. 2009. Effect of alkaline earth metal doping on thermal , optical , magnetic and dielectric properties of BiFeO 3 nanoparticles 065004.
85. Search, H., C. Journals, A. Contact, M. Iopscience and I. P. Address. 2011. Towards large-scale plasma-assisted synthesis of nanowires 174014.
86. Shang, D. S., L. Shi, J. R. Sun, B. G. Shen, F. Zhuge, R. W. Li, Y. G. Zhao, D. S. Shang, L. Shi, J. R. Sun, B. G. Shen, F. Zhuge, R. W. Li and Y. G. Zhao. 2010. Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing 072103: 21–24.
87. Shanthi, S. I., S. Poovaragan, M. V Arularasu, S. Nithya and R. Sundaram. 2018. Li , Mg and Sr Doped and Undoped Zinc 18(8): 5441–5447.
88. Sharma, N., S. Jandaik, S. Kumar and M. Chitkara. 2015. Synthesis , characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles (April): 37–41.
89. Sharma, N., J. Kumar, S. Thakur and S. Sharma. 2013. Antibacterial study of silver doped zinc oxide nanoparticles against Staphylococcus aureus and Bacillus subtilis. Drug Invention Today, 5(1): 50–54. Elsevier Ltd.
90. Sheehan, S., P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling and K. R. Thampi. 2015. Solar Energy Materials & Solar Cells Flexible glass substrate based dye sensitized solar cells 132: 237–244.
91. Shenhar, R. O. Y. and V. M. Rotello. 2003. Nanoparticles : Scaffolds and Building Blocks 36(7): 549–561.
92. Shrisha, B. V, S. Bhat, D. Kushavah and K. G. Naik. 2016. ScienceDirect Hydrothermal growth and characterization of Al-doped ZnO nanorods. Materials Today: Proceedings, 3(6): 1693–1701. Elsevier Ltd.
93. Silva, A. M. B., R. N. Correia, J. M. M. Oliveira and M. H. V Fernandes. 2010. Structural characterization of TiO 2 – P 2 O 5 – CaO glasses by spectroscopy 30: 1253–1258.
94. Silva, G. A., M. Sc and D. Ph. 2004. Introduction to Nanotechnology and Its Applications to Medicine.
95. Singh, F. 2016. SC. J. Alloys Compd.. Elsevier Ltd.
96. Singhal, S., J. Kaur, T. Namgyal and R. Sharma. 2012. Cu-doped ZnO nanoparticles : Synthesis , structural and electrical properties. Physica B: J. Phys. Condens. Matter 407(8): 1223–1226. Elsevier.
97. Soni, D., P. Parsoya, B. K. Menariya, R. Vyas and R. Ameta. 2015. Photoelectrochemical cells. Solar Energy Conversion and Storage: Photochemical Modes, 414(November): 29–53.
98. Sonker, R. K., S. Sikarwar, S. R. Sabhajeet, Rahul and B. C. Yadav. 2018. Spherical growth of nanostructures ZnO based optical sensing and photovoltaic application. Optical Materials, 83(May): 342–347. Elsevier.
99. Srivastava, V. C. 2013. Photocatalytic Oxidation of Dye Bearing Wastewater by Iron Doped Zinc Oxide.
100. Stubhan, T., H. Oh, L. Pinna, J. Krantz, I. Litzov and C. J. Brabec. 2011. Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer. Organic Electronics, 12(9): 1539–1543. Elsevier B.V.
101. Suwanboon, S., P. Amornpitoksuk, A. Haidoux and J. C. Tedenac. 2008. Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature 462: 335–339.
102. Thaweesaeng, N., S. Supankit and W. Techidheera. 2013. Structure Properties of As-synthesized Cu-doped ZnO Nanopowder Synthesized by Co-precipitation Method. Energy Procedia, 34: 682–688. Elsevier B.V.
103. Vidyanandan, K. V and S. Member. 2017. An Overview of Factors Affecting the Performance of Solar PV Systems (February).
104. Vittal, R. and K. C. Ho. 2017. Zinc oxide based dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 70(December 2016): 920–935. Elsevier Ltd.
105. Vorkapic, D. and T. Matsoukas. 1998. Effect of Temperature and Alcohols in the Preparation of 20: 2815–2820.
106. Wang, K. L. 2002. Issues of Nanoelectronics : A Possible Roadmap Review 235–266.
107. Wang, X., L. Zhi and K. Mu. 2008. Transparent , Conductive Graphene Electrodes for Dye-Sensitized Solar Cells.
108. Whitesides, G. M. 2005. essays 172–179.
109. Wilson, W. W., M. M. Wade, S. C. Holman and F. R. Champlin. 2001. Status of methods for assessing bacterial cell surface charge 43: 153–164.
110. Wojnarowicz, J., S. Kusnieruk, T. Chudoba, S. Gierlotka, W. Lojkowski, W. Knoff, M. I. Lukasiewicz, B. S. Witkowski, A. Wolska, M. T. Klepka, T. Story and M. Godlewski. 2015. Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis 1957–1969.
111. Wu, M., W. Chen, S. Chan and W. Su. 2018. Applied Surface Science The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications. Applied Surface Science, 429: 9–15. Elsevier B.V.
112. Xia, T., Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. Meng, S. Lin, X. Wang, M. Wang, Z. Ji, J. I. Zink, M. Lutz, V. Castranova, S. Lin and A. E. Nel. 2011. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebra fi sh Embryos (2): 1223–1235.
113. Xiao, W., S. Member, N. Ozog, S. Member, W. G. Dunford and S. Member. 2007. Topology Study of Photovoltaic Interface for Maximum Power Point Tracking 54(3): 1696–1704.
114. Yeh, C. S., C. C. Kuo, B. R. Huang and S. Dhar. 2005. Optical and Transport Properties Of Undoped And Al- , Ga- and In-Doped ZNO Thin Films 7(6): 3039–3046.
115. Yoo, R., D. Li, H. J. Rim, S. Cho, H. Lee and W. Lee. 2018. PT SC. Sens. Actuators B Chem. Elsevier B.V.
116. Yousefi, R., F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N. M. Huang, W. J. Basirun and M. Azarang. 2015. Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater Sci Semicond Process 32: 152–159.
117. Yousefi, R., A. K. Zak and F. Jamali-sheini. 2013. The effect of group-I elements on the structural and optical properties of ZnO nanoparticles. Ceram. Int. 39(2): 1371–1377. Elsevier.
118. Zno, C. F. 2017. Author ’ s Accepted Manuscript. Mod. Electron. Mater.. Elsevier B.V.
Published
2022-08-10
How to Cite
Mehran, M., Saeed, U., Khalid, M. W., Haider, M. W., Ali, R. S., Ajmal, S., Munim, M. S. B., Shamshad, S., Iqbal, S., & Raza, M. Y. (2022). Designing of Sr-doped ZnO Nanoparticles onto FTO Glass for Photovoltaic Application. Central Asian Journal of Theoretical and Applied Science, 3(8), 60-86. Retrieved from https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/886
Section
Articles