Role of Biotechnology in the Conservation of Plant Biodiversity

  • Dr. Shyam Govind Singh Associate Professor, Dept. of Botany, Agra College, Agra, Uttar Pradesh, India
Keywords: biotechnology, biodiversity, conservation, plant, nature, convention, seeds, earth

Abstract

Biological diversity provides the variety of life on the Earth and can be defined as the variability among and between the living organisms and species of surrounding ecosystems and ecological complexes of their life support. It has been estimated that one third of the global plant species are threatened in different level according to the International Union of Conservation of Nature (IUCN).The major threat to rapid loss and extinction of genetic diversity due to habitat destruction, pollution, climate change, invasion of exotic species, human population pressure, ever increasing agricultural pressure and practices, life style change etc. are well-known. Biodiversity conservation is a global concern. All member states of the Convention on Biological Diversity (CBD) took measure to preserve both native and agricultural biodiversity. The global concern of biodiversity conservation initiated either by in situ or ex situ methods. In situ methods protect both plants and their natural habitat. On the other hand, ex situ methods involves preservation and maintenance of plant species or plant parts (such as seeds, cuttings, rhizomes, tubers etc.) outside their natural habitat for the purpose of developing seed banks or more preciously gene banks following classical / advanced methods of plant propagation. Classical methods of plant propagations have certain limitations in terms of rapid production of plants or plant propagules and their long term conservation. So, the biotechnological methods such as plant tissue culture, plant cell culture, anther culture, embryo culture etc. are quite applicable and useful techniques for ex situ conservation. On the other hand, the production of superior quality seeds has enhanced by the application of plant biotechnology. So, plant biotechnology offers new means of improving biodiversity conservation rather than threatening biodiversity in various ways.

Downloads

Download data is not yet available.

References

1. Rao, N.K. Plant genetic resources: Advancing conservation and use through biotechnology. African J. Biotech. 2004, 3, 136–145.
2. United Nations Conference on Environment and Development (UNCED). Convention on Biological Diversity; UNCED: Geneva, Switzerland, 1992.
3. Ramsay, M.M.; Jacskon, A.D.; Porley, R.D. A Pilot Study for ex Situ Conservation of UK Bryophytes. In Proceedings of EuroGard 2000—II European Botanic Garden Congress, Las Palmas de Gran Canaria, Spain, 10–15 April 2000; Botanic Garden Conservation International: Richmond, UK, 2000; pp. 52–57.
4. Engelmann, F. Germplasm Collection, Storage and Conservation. In Plant Biotechnology and Agriculture; Altman, A., Hasegawa, P.M., Eds.; Academic Press: Oxford, UK, 2012; pp. 255–268.
5. Withers, L.A. Collecting in Vitro for Genetic Resources Conservation. In Collecting Plant Genetic Diversity; Guarino, L., Rao, R., Reid, R., Eds.; Centre for Agricultural Bioscience International: Wallingford, UK, 1995; pp. 511–515.
6. Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell. Dev. Biol. Plant 2011, 47, 5–16.
7. Tandon, P.; Kumaria, S. Prospects of Plant Conservation Biotechnology in India with Special Reference to Northeastern Region. In Biodiversity: Status and Prospects; Tandon, P., Kumaria, S., Eds.; Norasa Publishing House: New Delhi, India, 2005; pp. 79–91.
8. Pence, V.C. In vitro collecting (IVC). I. The effect of collecting method and antimicrobial agents on contamination in temperate and tropical collections. In Vitro Cell. Dev. Biol. Plant 2005, 41, 324–332.
9. Reed, B.M.; Sarasan, V.; Kane, M.; Bunn, E.; Pence, V.C. Biodiversity conservation and conservation biotechnology tools. In Vitro Cell. Dev. Biol. Plant 2011, 47, 1–4.
10. Withers, L.A. In vitro Collecting-Concept and Background. In In Vitro Collecting Techniques for Germplasm Conservation; Pence, V.C., Sandoval, J.A., Villalobos, V.M., Engelman, F., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 2002; pp. 16–25.
11. Pence, V.C. In vitro Collecting—A Tool for Wild or Endangered Species Conservation. In In Vitro Collecting Techniques for Germplasm Conservation; Pence, V.C., Sandoval, J.A., Villalobos, V.M., Engelman, F., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 2002; pp. 26–29.
12. Pence, V.C.; Sandoval, J.A. Controlling Contamination during in Vitro Collecting. In In Vitro Collecting Techniques for Germplasm Conservation; Pence, V.C., Sandoval, J.A., Villalobos, V.M., Engelman, F., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 2002; pp. 30–40.
13. Falkiner, F. The criteria for choosing an antibiotic for control of bacteria in plant tissue culture. IAPTC Newsl. 1990, 60, 13–23.
14. Rillo, E.P.; Paloma, M.B. Storage and transport of zygotic embryos of Cocos nucifera L. for in vitro culture. Plant Gen. Res. Newsl. 1991, 86, 1–4.
15. Alvarenga, V.S.; Bianchetti, L.B.; López, P.E.; Sandoval, O.E.; Zacher, M.B. Cacao. In In Vitro Collecting Techniques for Germplasm Conservation; Pence, V.C., Sandoval, J.A., Villalobos, V.M., Engelman, F., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 2002; pp. 47–51.
16. Yidana, J.A.; Withers, L.A.; Ivins, J. Development of a simple method for collecting and propagating cocoa germplasm in vitro. Acta Hortic. 1987, 212, 95–98.
17. Yidana, J.A. The Development of in Vitro Collecting and Isozyme Characterization of Cocoa Germplasm. Ph.D. Thesis, University Nottingham, Nottingham, UK, March 1988.
18. Engelmann, F.; Assy-Bah, B.; Bagniol, S.; Dumet, D.; Michaux-Ferriere, N. Cryopreservation of Date Palm, Oil Palm, and Coconut. In Biotecnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer-Verlag: Berlin, Germany, 1995; pp. 148–167.
19. Engelmann, F. Coconut. In In Vitro Collecting Techniques for Germplasm Conservation; Pence, V.C., Sandoval, J.A., Villalobos, V.M., Engelman, F., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 2002; pp. 68–71.
20. Ashburner, G.R.; Faure, M.G.; Tomlinson, D.R.; Thompson, W.K. Collection of coconut (Cocos nucifera) embryos from remote locations. Seed Sci. Technol. 1996, 24, 159–169.
21. Samosir, Y.M.S.; Godwin, I.D.; Adkins, S.W. A new technique for coconut (Cocos nucifera) germplasm collection from remote sites: Culturability of embryos following low temperature incubation. Aust. J. Bot. 1999, 47, 69–75.
22. Assy-Bah, B.; Durand-Gasselin, T.; Pannetier, C. Use of zygotic embryo culture to collect germplasm of coconut (Cocos nucifera L.). Plant Genet. Resour. Newsl. 1987, 71, 4–10.
23. Engelmann, F.; Malaurie, B.; N’Nan, O. In Vitro Culture of Coconut (Cocos nucifera L.) Zygotic Embryos. In Plant Embryo Culture: Methods and Protocols, Methods in Molecular Biology Series; Thorpe, T., Yeung, E., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 63–74.
24. Lozoya-Saldaña, H.; Oicatá, M.; Borbor-Ponce, M.M.; Calderón-Díaz, J.H. Coffe. In In Vitro Collecting Techniques for Germplasm Conservation; Pence, V.C., Sandoval, J.A., Villalobos, V.M., Engelman, F., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 2002; pp. 42–46.
25. Montoya-Henao, L.M.; Tapia, C.; Espadas, F.L.; Sandoval, G.; Sandoval, J.A. Musa. In In Vitro Collecting Techniques for Germplasm Conservation; Pence, V.C., Sandoval, J.A., Villalobos, V.M., Engelman, F., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 2002; pp. 52–55.
Published
2022-09-12
How to Cite
Singh, D. S. G. (2022). Role of Biotechnology in the Conservation of Plant Biodiversity. Central Asian Journal of Theoretical and Applied Science, 3(9), 25-33. Retrieved from https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/913